高级检索

圆形摆动激光对5A06铝合金激光焊接熔池流动行为的影响分析

宫建锋, 李俐群, 孟圣昊

宫建锋, 李俐群, 孟圣昊. 圆形摆动激光对5A06铝合金激光焊接熔池流动行为的影响分析[J]. 焊接学报, 2022, 43(11): 50-55, 83. DOI: 10.12073/j.hjxb.20220707002
引用本文: 宫建锋, 李俐群, 孟圣昊. 圆形摆动激光对5A06铝合金激光焊接熔池流动行为的影响分析[J]. 焊接学报, 2022, 43(11): 50-55, 83. DOI: 10.12073/j.hjxb.20220707002
GONG Jianfeng, LI Liqun, MENG Shenghao. Influence of circular oscillating laser on the melt flow behavior during 5A06 aluminum alloy laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 50-55, 83. DOI: 10.12073/j.hjxb.20220707002
Citation: GONG Jianfeng, LI Liqun, MENG Shenghao. Influence of circular oscillating laser on the melt flow behavior during 5A06 aluminum alloy laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 50-55, 83. DOI: 10.12073/j.hjxb.20220707002

圆形摆动激光对5A06铝合金激光焊接熔池流动行为的影响分析

基金项目: 国防科技基础加强计划资助
详细信息
    作者简介:

    宫建锋,博士;主要从事激光焊接熔池热流场数值模拟研究;Email: gjf0321ray@163.com

    通讯作者:

    李俐群,博士,教授,博士研究生导师;Email: liliqun@hit.edu.cn.

  • 中图分类号: TG456.7

Influence of circular oscillating laser on the melt flow behavior during 5A06 aluminum alloy laser welding

  • 摘要: 摆动激光焊接方法中,激光束对于熔池的搅拌作用将导致熔池流动行为有异于传统激光焊接,因此为了从理论上阐述摆动激光焊接过程中熔池流动行为,构建了5A06铝合金摆动激光焊接过程热—流耦合模型.系统分析了圆摆激光焊接过程中,摆动幅度和摆动频率对熔池热流场的影响规律.结果表明,增加摆动幅度会降低熔池深宽比,从而提高焊接稳定性,同时熔池流动行为更加复杂,增大了熔池内部物质交换范围.摆动频率的增加会抑制熔池流动,使其更加规律,有利于气泡的排出从而降低气孔率.
    Abstract: The oscillating effect of the laser beam on the molten pool during laser welding will cause the flow behavior of the molten pool to be different from that of traditional laser welding. Therefore, in order to theoretically explain the characteristics of the molten pool in the oscillating laser welding process, a thermal-fluid numerical model of 5A06 aluminum alloy oscillating laser welding process was built in this paper. The influence of oscillating amplitude and frequency on the heat flow field of circular oscillating laser welding is systematically analyzed. The results show that the increase of the amplitude will reduce the aspect ratio of the molten pool and improve the welding stability. At the same time, the flow behavior of the molten pool is more complex, which increases the material exchange range in the molten pool. The increase of the frequency will inhibit the flow of the molten pool and make it more regular, which is conducive to the discharge of bubbles and reduces porosity.
  • 图  1   圆形摆动激光焊接示意图

    Figure  1.   Schematic of circular oscillating laser welding

    图  2   三维网格划分(mm)

    Figure  2.   Divided meshes in the numerical model

    图  3   高斯旋转体热源

    Figure  3.   Schematic of the rotary-Gaussian body heat source

    图  4   试验与模拟结果熔合线比对 (P = 6 kW,v = 1 m/min)

    Figure  4.   Comparison of experimental and simulated weld cross section. (a) simulated result; (b) experimental result

    图  5   不同摆动幅度下熔池上表面热场分布

    Figure  5.   Temperature distribution at the top surface with different scan amplitude. (a) scan amplitude 1 mm; (b) scan amplitude 2 mm; (c) scan amplitude 3 mm

    图  6   不同摆动幅度下熔池纵截面热场分布

    Figure  6.   Temperature distribution at the cross-section with different scan amplitude. (a) scan amplitude 1 mm; (b) scan amplitude 2 mm; (c) scan amplitude 3 mm

    图  7   不同摆动幅度下熔池纵截面流场分布

    Figure  7.   Melt flow patterns for laser welding with different scan amplitude. (a) scan amplitude 1 mm; (b) scan amplitude 2 mm; (c) scan amplitude 3 mm

    图  8   摆动幅度对焊接熔池流场影响示意图

    Figure  8.   Schematic of the influence of the amplitude on the molten flow field

    图  9   不同摆动频率下熔池纵截面热场分布

    Figure  9.   Temperature distribution at the cross-section with different scan frequency. (a) scan frequency 40 Hz; (b) scan frequency 60 Hz; (c) scan frequency 80 Hz

    图  10   不同摆动频率下熔池纵截面流场分布

    Figure  10.   Melt flow patterns for laser welding with different scan frequency. (a) scan frequency 40 Hz; (b) scan frequency 60 Hz; (c) scan frequency 80 Hz

    图  11   焊接熔池流动行为示意图

    Figure  11.   Schematic of the influence of the frequency on the molten flow field

    图  12   摆动频率对气孔率的影响

    Figure  12.   Effect of different frequencies on porosity of welds

  • [1] 周立涛, 王旭友, 王威, 等. 激光扫描焊接工艺对铝合金焊接气孔率的影响[J]. 焊接学报, 2014, 35(10): 65 − 68.

    Zhou Litao, Wang Xuyou, Wang Wei, et al. Effects of laser weaving welding process on porosity rate of aluminum alloy[J]. Transactions of the China Welding Institution, 2014, 35(10): 65 − 68.

    [2] 黄瑞生, 邹吉鹏, 孟圣昊, 等. 铝合金激光扫描焊接工艺特性[J]. 焊接学报, 2019, 40(4): 61 − 66. doi: 10.12073/j.hjxb.2019400101

    Huang Ruisheng, Zou Jipeng, Meng Shenghao, et al. Process characteristics of laser scanning welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2019, 40(4): 61 − 66. doi: 10.12073/j.hjxb.2019400101

    [3] 张义. 激光焊接技术的发展与展望探讨[J]. 科学技术创新, 2019, 22: 180 − 181.

    Zhang Yi. Discussion on the development and prospect of laser welding technology[J]. Scientific and Technological Innovation, 2019, 22: 180 − 181.

    [4] 包刚, 彭云, 陈武柱, 等. 超细晶粒钢光束摆动激光焊接的研究[J]. 应用激光, 2002, 22(2): 203 − 205. doi: 10.3969/j.issn.1000-372X.2002.02.032

    Bao Gang, Peng Yun, Chen Wuzhu, et al. Study on laser welding of ultra-fine grained steel with weaving beam[J]. Applied Laser, 2002, 22(2): 203 − 205. doi: 10.3969/j.issn.1000-372X.2002.02.032

    [5]

    Wang L, Gao M, Zhang C, et al. Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy[J]. Materials & Design, 2016, 108: 707 − 717.

    [6]

    Kim C, Kang M, Kang N. Solidification crack and morphology for laser weave welding of Al 5J32 alloy[J]. Science & Technology of Welding & Joining, 2013, 18(1): 57 − 61.

    [7]

    Miyagi M, Zhang X D, Kawahito Y, et al. Surface void suppression for pure copper by high-speed laser scanner welding-ScienceDirect[J]. Journal of Materials Processing Technology, 2017, 240: 52 − 59. doi: 10.1016/j.jmatprotec.2016.09.008

    [8] 高学松. 搭接接头摆动激光-GMAW复合焊接传热过程与熔池流场的数值分析[D]. 济南: 山东大学, 2019.
    [9]

    Liu T T, Mu Z Y, Hu R Z, et al. Sinusoidal oscillating laser welding of 7075 aluminum alloy: Hydrodynamics, porosity formation and optimization[J]. International Journal of Heat and Mass Transfer, 2019, 140: 346 − 358.

    [10]

    Li L Q, Gong J F, Xia H B, et al. Influence of scan paths on flow dynamics and weld formations during oscillating laser welding of 5A06 aluminum alloy[J]. Journal of Materials Research and Technology, 2020, 11: 19 − 32.

    [11]

    Voler V R, Swaminathan C R. General source-based method for solidification phase change[J]. Numerical Heat Transfer, 1991, 19(2): 175 − 189.

    [12]

    Voler V R, Prakash C. A fixed grid numerical modeling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30: 1709 − 1719. doi: 10.1016/0017-9310(87)90317-6

    [13]

    Hu B, Hu S S, Shen J Q, et al. Modeling of keyhole dynamics and analysis of energy absorption efficiency based on fresnel law during deep-penetration laser spot welding[J]. Computational Materials Science, 2015, 97: 48 − 54. doi: 10.1016/j.commatsci.2014.09.031

    [14]

    He X, DebRoy T, Fuerschbach P W. Probing temperature during laser spot welding from vapor composition and modeling[J]. Journal of Applied Physics, 2003, 94(10): 6949 − 6958. doi: 10.1063/1.1622118

    [15]

    He X, Elmer J W, DebRoy T. Heat transfer and fluid flow in laser microwelding[J]. Journal of Applied Physics, 2005, 97: 084909. doi: 10.1063/1.1873032

    [16] 吴甦, 赵海燕, 王煜, 等. 高能束焊接数值模拟中的新型热源模型[J]. 焊接学报, 2004, 25(1): 91 − 94.

    Wu Su, Zhao Haiyan, Wang Yu, et al. A new heat source model in numerical simulation of high energy beam welding[J]. Transactions of China Welding Institution, 2004, 25(1): 91 − 94.

  • 期刊类型引用(4)

    1. 高宝祺,赵衍华,张丽娜,邵震,管卫,黄一鸣,崔雷. 2219铝合金拉拔式摩擦塞补焊成形行为及其对界面结合质量的影响. 焊接学报. 2025(02): 7-17+71 . 本站查看
    2. 张忠科,初树晟. H62黄铜摩擦塞补焊接头微观组织及力学性能. 材料科学与工艺. 2024(06): 41-49 . 百度学术
    3. 马领航,李波,赵彦广,宋建岭,高世康,李雨,许子彦,周利. 火箭贮箱焊接缺陷修复技术研究现状. 电焊机. 2023(03): 31-45 . 百度学术
    4. 张亮亮,刘致远,剡晓旭. 6082铝合金FSW匙孔修复过程中温度场数值模拟. 甘肃高师学报. 2023(05): 1-5 . 百度学术

    其他类型引用(1)

图(12)
计量
  • 文章访问数:  423
  • HTML全文浏览量:  118
  • PDF下载量:  114
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-07-06
  • 网络出版日期:  2022-10-11
  • 刊出日期:  2022-11-24

目录

    /

    返回文章
    返回