Fatigue reliability analysis of load-carrying cruciform joints with misalignment effects
-
摘要: 探究缺陷效应对焊接件疲劳性能的影响是控制焊接质量的重要内容. 文中引入焊接缺陷参数的影响,基于累计寿命-临界损伤建立含缺陷承载十字焊接接头疲劳可靠性分析模型.首先,根据结构件焊缝和缺陷参数以及载荷条件,建立有限元计算模型,并基于平均应变能密度方法(average strain energy density method,SED)和热点应力方法(hot spot method,HS)等评估方法探究各特征参数对疲劳性能的影响.其次,结合BP神经网络和Miner线性累计损伤准则建立可靠性分析模型,以概率统计相关参数为基础系统分析疲劳载荷和变异系数对于疲劳可靠性指标的影响.结果表明,位移和角错位及其概率分布参数显著影响焊件的疲劳寿命分布及可靠性概率,该可靠性模型为工程焊件的疲劳寿命设计及监测检修提供参考依据.Abstract: Exploring the effect of defects on the fatigue performance of welded joints is an important content in controlling the quality of welding process. This paper introduces the defect effects, based on cumulative life-critical damage to establish fatigue reliability analysis model of misaligned load-carrying cruciform welded joints. First, the finite element models were established based on the geometrical and defect characteristics and cyclic loading conditions of experimental specimens. Then the fatigue performance of local parameters were explored based on the average strain energy density method (SED) and hot spot stress method (HS). Secondly, a reliability analysis model was established by combining BP neural network and Miner's linear cumulative damage theory to quantitatively analyze the effects of cycle loading, coefficient of variation on fatigue reliability and fatigue damage. The results show the axial and angular misalignments and their probability distribution parameters significantly affect the fatigue life distribution and reliability probability of welded joints. The reliability model provides a reference method for fatigue life design to monitoring and maintenance engineering weldments.
-
Keywords:
- welding defects /
- misalignment /
- fatigue reliability /
- local analysis method
-
-
表 1 影响因素统计数据
Table 1 statistical descriptors of influencing factors
影响因素 符号 分布类型 位置参数μ 尺度参数σ 位移错位 e 极大值分布 0.3663 0.5301 角错位 a 极大值分布 0.8553 0.7343 板厚 T 正态分布 12、10 0.047[16] 特征参数 m 常量 1.1 — C 正态分布 69322.1 0.057 累计损伤 Dcr 对数正态 1 0.1 -
[1] Kang G, Luo H. Review on fatigue life prediction models of welded joint[J]. Acta Mechanica Sinica, 2020, 36: 701 − 726. doi: 10.1007/s10409-020-00957-0
[2] Hobbacher A F. Recommendations for fatigue design of welded joints and components[M]. Cham: Springer International Publishing, 2016.
[3] European Committee for Standardization. EN 1993-1-9. Eurocode 3: Design of steel structures-Part 1-9: Fatigue[S]. Brussels, Belgium, 2005.
[4] British Standards Institution. Guide on methods for assessing the acceptability of flaws in metallic structures[M]. London, UK: British Standard Institution, 1999.
[5] Amirafshari P, Barltrop N, Wright M, et al. Weld defect frequency, size statistics and probabilistic models for ship structures[J]. International Journal of Fatigue, 2021, 145: 106069. doi: 10.1016/j.ijfatigue.2020.106069
[6] Ahola A, Björk T. Fatigue strength of misaligned non-load-carrying cruciform joints made of ultra-high-strength steel[J]. Journal of Constructional Steel Research, 2020, 175: 106334. doi: 10.1016/j.jcsr.2020.106334
[7] Song W, Liu X, Berto F, et al. Strain energy density based fatigue cracking assessment of load-carrying cruciform welded joints[J]. Theoretical and Applied Fracture Mechanics, 2017, 167(90): 142 − 153.
[8] 赵丙峰, 廖鼎, 朱顺鹏, 等. 机械结构概率疲劳寿命预测研究进展[J]. 机械工程学报, 2021, 57(16): 173 − 184. doi: 10.3901/JME.2021.16.173 Zhao Bingfeng, Liao Ding, Zhu Shunpeng, et al. Probabilistic fatigue life prediction of mechanical structures: state of the art[J]. Journal of Mechanical Engineering, 2021, 57(16): 173 − 184. doi: 10.3901/JME.2021.16.173
[9] 邓彩艳, 王红, 龚宝明, 等. 加载频率及焊接缺陷对5A06铝合金TIG焊接头超高周疲劳性能的影响[J]. 焊接学报, 2015, 36(12): 61 − 64. Deng Caiyan, Wang Hong, Gong Baoming, et al. Effects of loading frequency and welding defects on veryhigh-cycle fatigue properties of 5A06 aluminum alloy TIG welded joints[J]. Transactions of the China Welding Institution, 2015, 36(12): 61 − 64.
[10] Dong Y, Teixeira A P, Soares C G. Fatigue reliability analysis of butt welded joints with misalignments based on hotspot stress approach[J]. Marine Structures, 2019, 65: 215 − 228. doi: 10.1016/j.marstruc.2019.01.006
[11] Qiu Y, Shen W, Yan R, et al. Fatigue reliability evaluation of thin plate welded joints considering initial welding deformation[J]. Ocean Engineering, 2021, 236: 109440. doi: 10.1016/j.oceaneng.2021.109440
[12] 柯爽. 航空发动机涡轮轴的疲劳寿命预测与疲劳可靠性分析[D]. 成都: 电子科技大学, 2020. Ke Shuang. Fatigue Life Prediction and fatigue reliability analysis of aero-engine turboshaft[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
[13] 陈秉智, 何正平, 李向伟, 等. 某构件焊缝疲劳开裂的寿命预测方法应用对比[J]. 焊接学报, 2022, 43(5): 63 − 68. doi: 10.12073/j.hjxb.20210824001 Chen Binzhi, He Zhengping, Li Xiangwei, et al. Comparison of fatigue life predicting methods used in cracked welded component[J]. Transactions of the China Welding Institution, 2022, 43(5): 63 − 68. doi: 10.12073/j.hjxb.20210824001
[14] Lazzarin P, Zambardi R. A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches[J]. International Journal of Fracture, 2001, 112: 275 − 298. doi: 10.1023/A:1013595930617
[15] Lazzarin P, Berto F, Gomez F J, et al. Some advantages derived from the use of the strain energy density over a control volume in fatigue strength assessments of welded joints[J]. International Journal of Fatigue, 2008, 30(8): 1345 − 1357. doi: 10.1016/j.ijfatigue.2007.10.012
[16] 许金锦. 水下生产系统脐带缆抗疲劳优化设计及疲劳可靠性分析[D]. 大连: 大连理工大学, 2019. Xu Jinjin. The fatigue optimization design and reliability analysis of umbilical in subsea production system[D]. Dalian: Dalian University of Technology, 2019.