高级检索

含错位效应十字焊接接头疲劳可靠性评估

宋威, 满铮, 徐杰, 魏守盼, 崔慕春, 侍孝建, 刘雪松

宋威, 满铮, 徐杰, 魏守盼, 崔慕春, 侍孝建, 刘雪松. 含错位效应十字焊接接头疲劳可靠性评估[J]. 焊接学报, 2023, 44(6): 20-26, 34. DOI: 10.12073/j.hjxb.20220629001
引用本文: 宋威, 满铮, 徐杰, 魏守盼, 崔慕春, 侍孝建, 刘雪松. 含错位效应十字焊接接头疲劳可靠性评估[J]. 焊接学报, 2023, 44(6): 20-26, 34. DOI: 10.12073/j.hjxb.20220629001
SONG Wei, MAN Zheng, XU Jie, WEI Shoupan, CUI Muchun, SHI Xiaojian, LIU Xuesong. Fatigue reliability analysis of load-carrying cruciform joints with misalignment effects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 20-26, 34. DOI: 10.12073/j.hjxb.20220629001
Citation: SONG Wei, MAN Zheng, XU Jie, WEI Shoupan, CUI Muchun, SHI Xiaojian, LIU Xuesong. Fatigue reliability analysis of load-carrying cruciform joints with misalignment effects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 20-26, 34. DOI: 10.12073/j.hjxb.20220629001

含错位效应十字焊接接头疲劳可靠性评估

基金项目: 国家自然科学基金青年项目(52105403);江苏省自然科学基金项目(BK20200174);中国博士后基金面上项目(2021M0702753).
详细信息
    作者简介:

    宋威,博士,副教授;主要从事焊接结构力学及可靠性评价研究,金属材料及焊接接头的缺口疲劳效应研究以及含缺陷结构完整性评估技术及应用等工作. Email: swingways@hotmail.com

  • 中图分类号: TG 441.7; TG 405

Fatigue reliability analysis of load-carrying cruciform joints with misalignment effects

  • 摘要: 探究缺陷效应对焊接件疲劳性能的影响是控制焊接质量的重要内容. 文中引入焊接缺陷参数的影响,基于累计寿命-临界损伤建立含缺陷承载十字焊接接头疲劳可靠性分析模型.首先,根据结构件焊缝和缺陷参数以及载荷条件,建立有限元计算模型,并基于平均应变能密度方法(average strain energy density method,SED)和热点应力方法(hot spot method,HS)等评估方法探究各特征参数对疲劳性能的影响.其次,结合BP神经网络和Miner线性累计损伤准则建立可靠性分析模型,以概率统计相关参数为基础系统分析疲劳载荷和变异系数对于疲劳可靠性指标的影响.结果表明,位移和角错位及其概率分布参数显著影响焊件的疲劳寿命分布及可靠性概率,该可靠性模型为工程焊件的疲劳寿命设计及监测检修提供参考依据.
    Abstract: Exploring the effect of defects on the fatigue performance of welded joints is an important content in controlling the quality of welding process. This paper introduces the defect effects, based on cumulative life-critical damage to establish fatigue reliability analysis model of misaligned load-carrying cruciform welded joints. First, the finite element models were established based on the geometrical and defect characteristics and cyclic loading conditions of experimental specimens. Then the fatigue performance of local parameters were explored based on the average strain energy density method (SED) and hot spot stress method (HS). Secondly, a reliability analysis model was established by combining BP neural network and Miner's linear cumulative damage theory to quantitatively analyze the effects of cycle loading, coefficient of variation on fatigue reliability and fatigue damage. The results show the axial and angular misalignments and their probability distribution parameters significantly affect the fatigue life distribution and reliability probability of welded joints. The reliability model provides a reference method for fatigue life design to monitoring and maintenance engineering weldments.
  • 图  1   含错位效应焊接接头分析流程

    Figure  1.   Analysis process of misaligned welded joint

    图  2   焊接接头尺寸及标注(mm)

    Figure  2.   Welded joint size and mark

    图  3   含错位焊接头的二维有限元网格模型

    Figure  3.   2D finite element model for misaligned welded joint

    图  4   疲劳可靠性分析流程

    Figure  4.   Fatigue reliability analysis process

    图  5   应力集中系数km对比

    Figure  5.   Comparison of stress concentration factor. (a) Hot spot stress method; (b) Average strain energy density method

    图  6   拟合误差直方图

    Figure  6.   Fitting error histogram

    图  7   几何特征参数影响

    Figure  7.   Effect of geometric characteristic parameters

    图  8   S-N疲劳评估曲线对比

    Figure  8.   Comparison of S-N curves. (a) hot spot stress method; (b) average strain energy method

    图  9   位移和角错位概率分布曲线

    Figure  9.   Probability distribution of axial and angular misalignment. (a) axial misalignment; (b) angular misalignment

    图  10   疲劳寿命概率分布曲线

    Figure  10.   Probability distribution of fatigue life

    图  11   疲劳寿命累计分布函数

    Figure  11.   Cumulative probability distribution of fatigue life

    图  12   混合错位对于可靠性的影响

    Figure  12.   Effect of misalignment on reliability

    图  13   尺度参数缩放比例对疲劳寿命分布的影响

    Figure  13.   Fatigue life distribution for different scale parameters

    图  14   不同尺度参数缩放比例的可靠性指标

    Figure  14.   Reliability index for different scale parameters

    表  1   影响因素统计数据

    Table  1   statistical descriptors of influencing factors

    影响因素符号分布类型位置参数μ尺度参数σ
    位移错位e极大值分布0.36630.5301
    角错位a极大值分布0.85530.7343
    板厚T正态分布12、100.047[16]
    特征参数m常量1.1
    C正态分布69322.10.057
    累计损伤Dcr对数正态10.1
    下载: 导出CSV
  • [1]

    Kang G, Luo H. Review on fatigue life prediction models of welded joint[J]. Acta Mechanica Sinica, 2020, 36: 701 − 726. doi: 10.1007/s10409-020-00957-0

    [2]

    Hobbacher A F. Recommendations for fatigue design of welded joints and components[M]. Cham: Springer International Publishing, 2016.

    [3]

    European Committee for Standardization. EN 1993-1-9. Eurocode 3: Design of steel structures-Part 1-9: Fatigue[S]. Brussels, Belgium, 2005.

    [4]

    British Standards Institution. Guide on methods for assessing the acceptability of flaws in metallic structures[M]. London, UK: British Standard Institution, 1999.

    [5]

    Amirafshari P, Barltrop N, Wright M, et al. Weld defect frequency, size statistics and probabilistic models for ship structures[J]. International Journal of Fatigue, 2021, 145: 106069. doi: 10.1016/j.ijfatigue.2020.106069

    [6]

    Ahola A, Björk T. Fatigue strength of misaligned non-load-carrying cruciform joints made of ultra-high-strength steel[J]. Journal of Constructional Steel Research, 2020, 175: 106334. doi: 10.1016/j.jcsr.2020.106334

    [7]

    Song W, Liu X, Berto F, et al. Strain energy density based fatigue cracking assessment of load-carrying cruciform welded joints[J]. Theoretical and Applied Fracture Mechanics, 2017, 167(90): 142 − 153.

    [8] 赵丙峰, 廖鼎, 朱顺鹏, 等. 机械结构概率疲劳寿命预测研究进展[J]. 机械工程学报, 2021, 57(16): 173 − 184. doi: 10.3901/JME.2021.16.173

    Zhao Bingfeng, Liao Ding, Zhu Shunpeng, et al. Probabilistic fatigue life prediction of mechanical structures: state of the art[J]. Journal of Mechanical Engineering, 2021, 57(16): 173 − 184. doi: 10.3901/JME.2021.16.173

    [9] 邓彩艳, 王红, 龚宝明, 等. 加载频率及焊接缺陷对5A06铝合金TIG焊接头超高周疲劳性能的影响[J]. 焊接学报, 2015, 36(12): 61 − 64.

    Deng Caiyan, Wang Hong, Gong Baoming, et al. Effects of loading frequency and welding defects on veryhigh-cycle fatigue properties of 5A06 aluminum alloy TIG welded joints[J]. Transactions of the China Welding Institution, 2015, 36(12): 61 − 64.

    [10]

    Dong Y, Teixeira A P, Soares C G. Fatigue reliability analysis of butt welded joints with misalignments based on hotspot stress approach[J]. Marine Structures, 2019, 65: 215 − 228. doi: 10.1016/j.marstruc.2019.01.006

    [11]

    Qiu Y, Shen W, Yan R, et al. Fatigue reliability evaluation of thin plate welded joints considering initial welding deformation[J]. Ocean Engineering, 2021, 236: 109440. doi: 10.1016/j.oceaneng.2021.109440

    [12] 柯爽. 航空发动机涡轮轴的疲劳寿命预测与疲劳可靠性分析[D]. 成都: 电子科技大学, 2020.

    Ke Shuang. Fatigue Life Prediction and fatigue reliability analysis of aero-engine turboshaft[D]. Chengdu: University of Electronic Science and Technology of China, 2020.

    [13] 陈秉智, 何正平, 李向伟, 等. 某构件焊缝疲劳开裂的寿命预测方法应用对比[J]. 焊接学报, 2022, 43(5): 63 − 68. doi: 10.12073/j.hjxb.20210824001

    Chen Binzhi, He Zhengping, Li Xiangwei, et al. Comparison of fatigue life predicting methods used in cracked welded component[J]. Transactions of the China Welding Institution, 2022, 43(5): 63 − 68. doi: 10.12073/j.hjxb.20210824001

    [14]

    Lazzarin P, Zambardi R. A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches[J]. International Journal of Fracture, 2001, 112: 275 − 298. doi: 10.1023/A:1013595930617

    [15]

    Lazzarin P, Berto F, Gomez F J, et al. Some advantages derived from the use of the strain energy density over a control volume in fatigue strength assessments of welded joints[J]. International Journal of Fatigue, 2008, 30(8): 1345 − 1357. doi: 10.1016/j.ijfatigue.2007.10.012

    [16] 许金锦. 水下生产系统脐带缆抗疲劳优化设计及疲劳可靠性分析[D]. 大连: 大连理工大学, 2019.

    Xu Jinjin. The fatigue optimization design and reliability analysis of umbilical in subsea production system[D]. Dalian: Dalian University of Technology, 2019.

图(14)  /  表(1)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  29
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-06-24

目录

    /

    返回文章
    返回