高级检索

铝钢电磁脉冲焊接界面特性及金属粒子分布分析

迟露鑫, 黄岩, 许惠斌, 顾凌翔, 张玉虎, 冉洋, 吴江川

迟露鑫, 黄岩, 许惠斌, 顾凌翔, 张玉虎, 冉洋, 吴江川. 铝钢电磁脉冲焊接界面特性及金属粒子分布分析[J]. 焊接学报, 2023, 44(5): 36-43. DOI: 10.12073/j.hjxb.20220523001
引用本文: 迟露鑫, 黄岩, 许惠斌, 顾凌翔, 张玉虎, 冉洋, 吴江川. 铝钢电磁脉冲焊接界面特性及金属粒子分布分析[J]. 焊接学报, 2023, 44(5): 36-43. DOI: 10.12073/j.hjxb.20220523001
CHI Luxin, HUANG Yan, XU Huibin, GU Lingxiang, ZHANG Yuhu, RAN Yang, WU Jiangchuan. Analysis on interface characteristics and metal particle distributions in electromagnetic pulse welding with aluminum to steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 36-43. DOI: 10.12073/j.hjxb.20220523001
Citation: CHI Luxin, HUANG Yan, XU Huibin, GU Lingxiang, ZHANG Yuhu, RAN Yang, WU Jiangchuan. Analysis on interface characteristics and metal particle distributions in electromagnetic pulse welding with aluminum to steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 36-43. DOI: 10.12073/j.hjxb.20220523001

铝钢电磁脉冲焊接界面特性及金属粒子分布分析

基金项目: 国家自然科学基金资助项目(51805065);重庆市科委自然科学基金项目(cstc2020jcyj-msxmX0574);先进焊接与连接国家重点实验室开放课题研究资助(AWJ-19M02);重庆理工大学国家自然科学基金项目培育计划(2022PYZ013);重庆理工大学研究生科研创新项目资助(clgycx20203015);重庆理工大学大学生创新创业训练计划(2022CX175).
详细信息
    作者简介:

    迟露鑫,博士,副教授,硕士研究生导师;主要从事异种金属电磁脉冲焊接连接机理及数值模拟研究;Email: chiluxin200195@163.com

  • 中图分类号: TG 456.9

Analysis on interface characteristics and metal particle distributions in electromagnetic pulse welding with aluminum to steel

  • 摘要: 为明确铝/钢电磁脉冲焊接过程金属粒子运动对界面连接性能的影响,基于金属粒子流形成机理,对界面形貌及抗剪强度进行分析.结果表明,金属粒子滞留界面造成铝局部熔化,钢粒子原位生成FeAl,形成未结合区;沿着焊接方向,分射流对铝板压入作用逐渐增大,形成冶金结合的界面,并伴有富铝金属间相,直缝区为FeAl + Fe2Al5,小波区为Fe2Al5 + FeAl3,大波区为FeAl + FeAl3;铝钢焊接界面过渡区由塑变铝压入钢形成,铝侧焊缝的外边缘存在钢粒子,而钢侧焊缝存在熔融铝携带钢粒子,主要为FeAl + Fe2Al5 + FeAl3,且在焊缝内侧滞留了大量金属粒子,并以椭圆环的形式分布,在焊缝外侧,金属粒子滞落铝板表面造成凹坑,但在钢板表面为嵌入的片状铝;因此,在金属粒子滞留,并产生较多金属间化合物的位置成为剪切试验断裂源;通过波长公式调整搭接间隙,减少粒子滞留界面,椭圆焊缝断裂于铝材,提高了接头强度.
    Abstract: In order to investigate the effect of metal particle movement on interface connection performance in electromagnetic pulse welding of aluminum to steel, based on the formation mechanism of metal particles, the interfacial structure and tensile shear strength were analyzed. The results showed that metal particle entrapment at the interface caused local melting of aluminum. Steel particles generated in situ FeAl, forming an unbonded zone. Along the welding direction, the impact effect of the separate jet on the aluminum plate gradually increased, forming a metallurgical bond, accompanied by aluminum-rich intermetallic phases. FeAl + Fe2Al5 existed in the straight seam. Fe2Al5 + FeAl3 existed in the corrugated zone. FeAl + FeAl3 existed in the large corrugated zone. The transition zone of the welding interface was formed by plastic deformation of aluminum pressed into the steel. There were steel particles on the outer side of the aluminum plate weld, while there were molten aluminum carrying steel particles at the steel plate weld, mainly composed of FeAl + Fe2Al5 + FeAl3. A large number of metal particles gathered on the inner side of the weld and were distributed in the form of elliptical rings. Metal particles remained on the surface of the aluminum plate, causing pits, but there were embedded sheets of aluminum on the surface of the steel plate. Therefore, locations where metal particles were trapped and more intermetallic compounds were produced became shear fracture sources. The wavelength formula was used to adjust the lap gap to reduce particle entrapment, breaking the elliptic weld at the aluminum, and improving joint strength.
  • 图  1   电磁脉冲焊接过程

    Figure  1.   The welding process for the EMPW joint. (a) welding principle; (b) weldment assembly

    图  2   焊接接头抗剪试样及界面特征

    Figure  2.   Tensile shear specimen and interface characteristic of welded joint. (a) shear specimen; (b) macroscopic morphology of welding interface

    图  3   金属粒子流动行为与界面波形的关系[13]

    Figure  3.   Relationship between flow behavior of metal particles and interface waveform. (a) metal particle flow distribution; (b) formation of interface waveform

    图  4   焊接界面波形特性

    Figure  4.   Characteristics of welding interface. (a) unbound zone; (b) straight seam zone; (c) Wavelet zone; (d) large wave zone

    图  5   椭圆环形焊缝特征

    Figure  5.   Characteristics of elliptical annular weld. (a) shear fracture; (b) four positions for SEM

    图  6   区域1的断口表面特征(图5b的区域)

    Figure  6.   Fracture surface characteristics of zone 1 (zone in Fig.5b). (a) Fe element distribution at aluminum fracture surface; (b) Al element distribution at steel fracture surface

    图  7   区域2的断口表面特征(图5b的区域)

    Figure  7.   Fracture surface characteristics of zone 2 (zone in Fig.5b). (a) Fe element distribution at aluminum fracture surface; (b) Al element distribution at steel fracture surface

    图  8   区域3的断口表面特征(图5b的区域)

    Figure  8.   Fracture surface Characteristics of zone 3 (zone in Fig.5b). (a) Fe element distribution at aluminum fracture surface; (b) Al element distribution at steel fracture surface

    图  9   区域4的断口表面特征(图5b的区域)

    Figure  9.   Fracture surface characteristics of zone 4 (zone in Fig.5b). (a) Fe element distribution at aluminum fracture surface; (b) Al element distribution at steel fracture surface; (c) Lorentz force distribution of aluminum plate

    图  10   焊缝断口表面金属粒子分布

    Figure  10.   Metal particle distribution at the fracture surface of weld. (a) fracture surface of the weld at the aluminum side; (b) fracture surface of the weld at the steel side

    图  11   铝钢焊接接头抗剪的断裂位置

    Figure  11.   Fracture position of shear of welded joint with aluminum to steel

    表  1   6061铝合金的化学成分(质量分数,%)

    Table  1   Chemical compositions of 6061 aluminum alloy

    AlCuMnMgZnFeSiCr
    余量0.2460.150.960.250.70.4930.05
    下载: 导出CSV

    表  2   304不锈钢的化学成分(质量分数,%)

    Table  2   Chemical compositions of 304 stainless steel

    FeSiCrCMnPSNi
    余量0.75≤1.00.082.00.0350.01511
    下载: 导出CSV

    表  3   图4的4个区上的点扫描(原子分数,%)

    Table  3   EDS results of four zones in Fig.4

    测点AlFeCr可能的相
    166.3526.097.56Fe2Al5
    259.0232.018.97FeAl
    365.9426.197.87Fe2Al5
    476.7218.205.07FeAl3
    569.8223.466.72FeAl3
    651.9633.8514.19FeAl
    下载: 导出CSV
  • [1]

    Zhang Changing, Liu Xiao, Jin Xin, et al. Study on resistance spot brazing process and joint performance of pure aluminum 1060 / galvanized steel[J]. China Welding, 2021, 30(1): 37 − 42.

    [2] 张满, 张军, 蒋腾, 等. Fe-Al金属间化合物对铝/钢钎焊接头力学性能的影响[J]. 焊接学报, 2018, 39(1): 61 − 64. doi: 10.12073/j.hjxb.2018390014

    Zhang Man, Zhang Jun, Jiang Teng, et al. Effect of Fe-Al intermetallic compound on mechanical property of aluminum/steel brazed joint[J]. Transactions of the China Welding Institution, 2018, 39(1): 61 − 64. doi: 10.12073/j.hjxb.2018390014

    [3] 石玗, 梁琪, 张刚, 等. 激光毛化对铝/钢电弧熔钎焊接接头界面与性能的影响[J]. 焊接学报, 2020, 41(5): 25 − 29. doi: 10.12073/j.hjxb.20190916002

    Shi Yu, Liang Qi, Zhang Gang, et al. Effect of laser texturing on the interface and properties of aluminum/steel arc fusion brazed joints[J]. Transactions of the China Welding Institution, 2020, 41(5): 25 − 29. doi: 10.12073/j.hjxb.20190916002

    [4]

    Liu Jinglin, Hao Zilin, Xie Yuming, et al. Interface stability and fracture mechanism of Al/Steel friction stir lap joints by novel designed tool[J]. Journal of Material Processing Technology, 2022, 300: 1 − 11. doi: 10.1007/s00170-020-05815-8

    [5]

    Lu Zhenyang, Gong Wentao, Chen Shujun, et al. Interfacial microstructure and local bonding strength of magnetic pulse welding joint between commercially pure aluminum 1060 and AISI 304 stainless steel[J]. Journal of Manufacturing Processes, 2019, 46: 59 − 66. doi: 10.1016/j.jmapro.2019.07.041

    [6]

    Yu Haiping, Dang Haiqing, Qiu Yanan. Interfacial microstructure of stainless steel/aluminum alloy tube lap joints fabricated via magnetic pulse welding[J]. Journal of Material Processing Technology, 2017, 250: 297 − 303. doi: 10.1016/j.jmatprotec.2017.07.027

    [7]

    Geng Huihui, Sun Liqiang, Li Guangyao, et al. Fatigue fracture properties of magnetic pulse welded dissimilar Al-Fe lap joints[J]. International Journal of Fatigue, 2019, 121: 146 − 154. doi: 10.1016/j.ijfatigue.2018.12.027

    [8]

    Wang Shaoluo, Zhou Binbin, Zhang Xu, et al. Mechanical properties and interfacial microstructures of magnetic pulse welding joints with aluminum to zinc-coated steel[J]. Material Science & Engineering A, 2020, 788: 139425.

    [9]

    Kakizaki S, Watanabe M, Kumai s. Simulation and experimental analysis of metal jet emission and weld interface morphology in impact welding[J]. Material Transaction, 2011, 52(5): 1003 − 1008. doi: 10.2320/matertrans.L-MZ201128

    [10]

    Chi Luxin, Wang Xinxin, Ran Yang, et al. Experimental study and numerical simulation of interfacial morphology by electromagnetic pulse welding with aluminum to steel[J]. Material Transaction, 2021, 62(9): 1343 − 1351. doi: 10.2320/matertrans.MT-M2021036

    [11]

    Qi Junxiang, Miao Guanghong, Ai Jiuying, et al. Study on numerical simulation of TA1-304 stainless steel explosive welding[J]. China Welding, 2021, 30(2): 11 − 16.

    [12] 毕志雄, 李雪交, 吴勇, 等. 钛箔/钢爆炸焊接的界面结合性能[J]. 焊接学报, 2022, 43(4): 81 − 85. doi: 10.12073/j.hjxb.20211105002

    Bi Zhixiong, Li Xuejiao, Wu Yong, et al. Interfacial bonding properties of titanium foil/steel explosive welding[J]. Transactions of the China Welding Institution, 2022, 43(4): 81 − 85. doi: 10.12073/j.hjxb.20211105002

    [13]

    Bahrani A S, Black T J, Crossland B. The mechanics of wave formation in explosive welding[J]. Mathematical Physical & Engineering Science, 1967, 296: 123 − 136.

    [14]

    Reid S R. Wake instability mechanism for wave formation in explosive welding[J]. International Journal of Mechanical Sciences, 1978, 20(4): 247 − 253. doi: 10.1016/0020-7403(78)90086-3

    [15]

    Li Y L, Liu Y R, Yang J, et al. First principle calculations and mechanical properties of the intermetallic compounds in a laser welded steel/aluminum joint[J]. Optics and Laser Technology, 2020, 122: 105875. doi: 10.1016/j.optlastec.2019.105875

    [16] 申中宝, 邱然锋, 石红信, 等. 铝/钢固态焊接结合界面金属间化合物生长机制[J]. 焊接学报, 2019, 40(6): 58 − 63. doi: 10.12073/j.hjxb.2019400155

    Shen Zhongbao, Qiu Ranfeng, Shi Hongxin, et al. Growth mechanism of intermetallic compounds at the solid-state joining interface of aluminum/steel[J]. Transactions of the China Welding Institution, 2019, 40(6): 58 − 63. doi: 10.12073/j.hjxb.2019400155

    [17] 闫飞, 周一凡, 唐本刊, 等. 基于磁控冶金的铝/钢异种金属焊接特性[J]. 焊接学报, 2022, 43(5): 98 − 103. doi: 10.12073/j.hjxb.20220101004

    Yan Fei, Zhou Yifan, Tang Benkan, et al. Welding characteristics of Al/steel dissimilar metals based on magnetically controlled metallurgy[J]. Transactions of the China Welding Institution, 2022, 43(5): 98 − 103. doi: 10.12073/j.hjxb.20220101004

  • 期刊类型引用(11)

    1. 马国龙,张志毅,毛镇东,李刚卿,韩晓辉,杨志斌. 高速列车用铝合金型材激光-MIG复合焊工艺特性和接头性能. 材料导报. 2023(12): 195-200 . 百度学术
    2. 姚屏,许敏,林茜,黄韵怡,王晓军. 机器人双脉冲弧焊工艺模式对铝合金焊缝质量的影响. 广东技术师范大学学报. 2023(06): 1-7 . 百度学术
    3. 王晓军,杨健,路彦龙,安兵. 6N01铝合金K-TIG焊接头的组织及性能. 焊接技术. 2021(08): 19-23+105-106 . 百度学术
    4. 丁亚茹,陈芙蓉. 时效处理后铝合金焊接接头组织和性能的变化. 稀有金属材料与工程. 2021(11): 4051-4058 . 百度学术
    5. 王伟,王浩,陈辉,朱宗涛. 6N01S-T5铝合金高速激光-MIG复合焊接工艺. 焊接学报. 2019(07): 55-60+66+163 . 本站查看
    6. 赵云峰,丁洁琼,梁连杰,李兴斐,魏艳红. 轨道车辆大型结构件焊接变形及残余应力有限元分析. 焊接. 2019(11): 13-19+65-66 . 百度学术
    7. 徐敏,薛家祥,黄雯锦. 铝合金薄板脉冲MIG焊低热输入工艺. 焊接学报. 2017(06): 110-114+134 . 本站查看
    8. 张翔. 高速列车用A6N01-T5铝合金激光-MIG复合焊接头疲劳性能研究. 热加工工艺. 2017(07): 64-67+71 . 百度学术
    9. 石康柠,曹益,梁志敏. 6N01铝合金焊接接头软化现象分析. 热加工工艺. 2017(21): 185-188 . 百度学术
    10. 乔及森,王鹏建,张阳羊,赵文军,陈剑虹. 7055喷射成形高强铝合金激光焊接头组织及性能. 电焊机. 2016(11): 21-25 . 百度学术
    11. 薛家祥,黄雯锦,徐敏. 铝薄板高速DP-GMAW焊接性能的研究. 焊接. 2016(05): 1-4+73 . 百度学术

    其他类型引用(14)

图(11)  /  表(3)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  39
  • PDF下载量:  67
  • 被引次数: 25
出版历程
  • 收稿日期:  2022-05-22
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-05-24

目录

    /

    返回文章
    返回