-
不锈钢具有强度高和抗腐蚀性好等优点,广泛应用于交通运输、核电、能源、医疗器械等领域[1-5]. 目前,由于不锈钢具有线膨胀系数大、热导率低等特性[6-7],采用常规弧焊或电阻点焊对城市轨道交通车辆的薄板不锈钢车体进行焊接,存在如下问题:薄板弧焊易出现裂纹、变形、烧穿等缺陷[8];而电阻焊焊缝不连续[9],无法实现防雨和降噪,当前国内一般采用硅烷密封剂对电阻焊焊缝进行胶粘密封,存在有机物污染、密封强度差和易老化失效等问题[10]. 国外有采用锡基软钎焊的工程应用,但是使用的钎料为含铅的锡基钎料,当前这种材料在国内已禁止使用.
激光焊作为一种高能束焊接方法,具有焊缝窄、热影响区小、工件变形小、焊接速度快、激光可达性好、生产效率高以及显著的“净化效应”等特点[11-14],在不锈钢薄板焊接领域中应用越来越广泛[15]. 激光钎焊的主要特点是热输入小[16-17],适用于夹层构件、蜂窝结构、薄板结构等异种复杂金属构件的润湿、铺展和填缝等[18-19].
激光钎焊的关键在于激光功率与离焦量、加热位置和激光束角度等工艺参数的设计与优化. 如激光束汇聚在钎料上,温度过高导致钎料熔化过快,而母材温度不足使钎料不能很好地润湿母材,影响钎料的填充效果,钎缝成形变差;激光束汇聚在母材上,钎料温度有可能过低,导致流动性较差,此外,母材也可能过热熔化,促使钎料直接进入熔池形成脆性相,恶化钎缝性能[20-21].
激光软钎焊可进一步降低薄板变形,但目前采用激光软钎焊实现不锈钢薄板搭接钎缝可靠密封的研究鲜有报道. 对电阻点焊后的不锈钢搭接缝进行激光软钎焊研究,并对钎缝组织与界面性能进行表征分析,可为不锈钢薄板激光软钎焊技术的研究提供数据支撑和理论支持.
-
试验所选母材为304不锈钢,试样尺寸为200 mm × 25 mm × 1 mm,其成分如表1所示. 试验前用丙酮去除不锈钢表面油污以及杂质. 试验所选钎料为ϕ1.6 mm的自制锡基合金丝SnSb8Cu4,其成分如表2所示. 试验选用自制液态无机酸作为钎剂.
表 1 304不锈钢的化学成分(质量分数,%)
Table 1. Chemical compositions of 304 stainless steel
C P Si Mn Ni Cr Fe 0.07 ≤0.045 ≤0.030 ≤2.00 8 ~ 11 18 ~ 20 余量 表 2 SnSb8Cu4焊丝的化学成分(质量分数,%)
Table 2. Chemical compositions of SnSb8Cu4 solder wire
Sb Cu Fe As Pb Sn 7.72 3.51 0.005 0.004 0.013 余量 钎焊设备采用锐科CAMHW 1000型连续式光纤激光器,激光软钎焊工艺参数如表3所示. 试板采用搭接形式,搭接宽度为5 mm,组装间隙为0.2 mm,丝状钎料预置在焊缝处,如图1所示.
表 3 激光软钎焊工艺参数
Table 3. Laser soldering process parameters
激光功率
P/kW焊接速度
v/(mm·s−1)离焦量
f/mm激光束倾角
θ/(°)0.2 2 300 60 焊后使用线切割机取样,经过磨抛后,采用4%硝酸酒精溶液腐蚀试样. 使用体视显微镜对焊缝截面的宏观形貌进行观察. 借助Zeiss Axio Vert,A1光学显微镜(optical microscope, OM)、Zeiss EVO 10型扫描电子显微镜(scanning electron microscope, SEM)及其自带的牛津 Ultim Max 型能谱仪(energy dispersive spectrometer, EDS)对钎料和钎焊接头进行形貌观察和成分分析.
依据标准GB/T 11363—2008《钎焊接头强度试验方法》采用 MTS Exceed E44 型电子万能试验机开展接头剪切试验,试样尺寸为45 mm × 20 mm × 2 mm,拉伸速率为 1 mm/min,试验重复3次,试验结果取其平均值. 采用Rigaku D/max-2500/PC型 X 射线衍射仪(X-ray diffractometer, XRD)对剪切试样断口的相组成进行检测.
-
图2为激光软钎焊钎缝形貌. 试验获得的钎缝外貌如图2a所示,钎缝外观光滑美观,钎缝宽度均匀一致,钎焊后试板基本无变形,外观无变色,不需要焊后处理. 从图2b可以看出,不锈钢母材在钎焊过程中没有熔化,这是由于钎焊温度较低,约为400 ℃,远远达不到母材的熔点,虽然采用高能束激光热源,但在离焦量为300 mm和激光束倾角为60°条件下进行精准低热输入,熔化的钎料在不锈钢母材表面润湿铺展,润湿铺展较好,钎着率高. 钎缝正面与母材之间形成光滑的圆弧过渡,钎缝整体均匀致密,钎缝内部没有出现熔蚀、未钎透、裂纹和气孔夹杂等缺陷,钎料能够连续填满5 mm搭接缝.
-
图3为钎料和钎缝的显微组织. 由图3a可见,有较多的小菱形块状析出物均匀分布在锡基巴氏合金基体中. 基体相为黑色部分的锡基固溶体相,基体相中除弥散分布的块状析出物,还有细小白色颗粒状析出物. 从图3b可以明显看出,钎焊接头分为不锈钢母材区、钎缝区、不锈钢母材区3个区域,钎缝区和母材区边界清晰明显,钎缝显微组织主要由黑色锡基固溶体相,大菱形块状白色相和短棒状白色相组成,白色相在钎缝中的分布与在钎料中的分布不同,呈现出较明显的不均匀分布,可能是在钎焊过程中锡基固溶体熔化及流动铺展使钎料中小块状白色相汇聚偏析形成.
图 3 钎料和钎缝微观组织
Figure 3. Microstructure of filler metal and soldering joint. (a) filler seam; (b) soldering seam
图4为钎缝的微观组织形貌,钎缝区组织和金相观察结果一致,也是由形貌不同的两种相组织和基体固溶体相组成,对其中的块状物成分进行EDS 点分析,点成分分析结果如表4 所示. 点 A 和点 B 处菱形块状析出物中主要为Sn,Sb元素,锡、锑摩尔分数比分别为 xSn/xSb = 47.87/30.91和xSn/xSb = 48.63/34.30,A,B摩尔分数比基本相近,考虑到锡基固溶体中Sn元素对检测结果的影响,A,B菱形块状析出物为 SnSb 相. 点 C 和点 D 处元素组成基本相同,其中Sn,Cu元素摩尔分数比分别为 xSn/xCu = 53.26/49.53 和 xSn/xCu = 49.92/55.70, C,D点摩尔分数比基本相近,可知两处的短棒状析出物为同一种析出相. 考虑到锡基固溶体对 Sn 元素含量的影响并结合XRD 检测结果可知,短棒状析出物为 Cu6Sn5相.
表 4 钎缝EDS 点分析结果(原子分数,%)
Table 4. EDS point analysis results of soldering seam
位置 Sn Sb Cu 可能的化合物 A 56.96 37.71 5.07 SnSb B 57.88 41.85 0.07 SnSb C 63.38 4.44 31.70 Cu6Sn5 D 59.41 4.03 35.65 Cu6Sn5 图5为钎缝区沿图4箭头所示的线扫描结果EDS线扫描图. 结果表明, Fe元素主要分布在母材区域,Sn 元素主要分布在钎缝区域,说明在钎焊过程中,不锈钢中的主要元素成分和钎缝钎料无明显扩散,从接头界面结合处发现Fe 和Sn元素有微小扩散距离.
根据文献[22],固体Fe和液态Sn在350 ℃左右保温50 h,固体Fe和液态Sn 之间有扩散深度约为36 μm的FeSn2金属间化合物层, 且扩散深度和时间近似成线性正比例关系. 在激光软钎焊过程中,钎焊温度约为400 ℃,且激光束在钎焊过程中以一定的速度移动,几乎没有保温时间. 因此可认为钎料和母材之间形成约1 ~ 2 μm FeSn2金属化合物.
-
通过试验获得激光软钎焊钎缝抗剪强度如表5所示,激光软钎焊获得的钎缝的平均抗剪强度为39 MPa. 由图2可知,激光钎焊过程中钎料进入钎缝中. 结合图6钎缝剪切断口形貌可知,钎缝区组织比较均匀,钎料润湿铺展在整个钎缝,钎料在钎焊过程中均匀连续铺展,钎着率高,断裂发生在钎缝,因此获得接缝的力学性能稳定.
表 5 钎焊接头抗剪强度
Table 5. Shearing strength of the soldering seam MPa
实测值 平均值 断裂位置 38,40,38 39 钎缝 为进一步分析钎缝内相组成,采用 XRD 对剪切试样断口的相组成进行检测,检测结果如图7所示.激光钎焊接头剪切断口主要由锡基固溶体相、SnSb相和Cu6Sn5相组成,Sb与Cu元素一部分分布于锡中形成锡基固溶体起强化基体的作用,另一部分与Sn形成金属间化合物 SnSb 和 Cu6Sn5.
-
(1) 采用锡基钎料对304不锈钢薄板搭接缝进行激光软钎焊,在激光功率为0.2 kW、离焦量为300 mm、激光束倾角为60°和焊接速度为2 mm/s的工艺条件下, 获得的钎缝表面成形较好,光滑连续,焊后几乎无变形,表面不变色,填缝深度可达5 mm.
(2) 试验获得的钎缝组织均匀致密,主要由锡基固溶体相、SnSb相和Cu6Sn5 相3种相组成,连续完整,无气孔、裂纹等缺陷,不锈钢和钎缝之间界面清晰,不锈钢主要成分和钎料之间扩散不明显,只存在1 ~ 2 μm的FeSn2金属化合物.
(3) 激光软钎焊接头的抗剪强度达到39 MPa,断裂发生在钎缝上,能够满足薄板不锈钢搭接焊的工程应用.
Microstructure and properties of stainless steel sheet laser soldering joint
-
摘要: 采用激光对304不锈钢薄板搭接缝进行软钎焊,并对钎缝组织与力学性能进行了研究. 工艺试验结果表明,当激光束倾角为60°和离焦量为300 mm时,能够有效降低激光束的热输入,实现304不锈钢薄板搭接缝的无变形钎焊,填缝深度可达5 mm,钎缝外观成形光滑、饱满,颜色与母材相近,无需涂装. 钎焊接头分为不锈钢母材区、钎缝区、不锈钢母材区3个区域,钎缝区和母材区的边界清晰且明显,钎缝组织连续致密,无气孔、裂纹等缺陷. 钎缝显微组织主要由黑色固溶体相、大菱形块状白色相和短棒状白色相组成,分析认为3种相分别为锡基固溶体相、SnSb相和Cu6Sn5相. 钎料和母材之间形成约1 ~ 2 μm金属化合物FeSn2扩散层. 钎缝的平均抗剪强度测试结果为39 MPa,能够满足不锈钢薄板搭接缝的工程应用.Abstract: Laser soldering was used to seal the lap joint of 304 stainless steel sheet, and the microstructure and shearing property of soldering joints were investigated. The results showed that with suitable laser beam tilt angle 60° and defocusing distance 300 mm, the laser heat input can be effectively reduced thus, ensuring a successful completion of laser soldering of 304 stainless steel sheet with a filling depth of 5 mm, and the appearance of the joint is smooth and full. The color of the joint is similar to that of the base metal, and no extra coating is needed.The laser soldering joint can be divided into three zones: stainless steel base metal zone, soldering seam zone and stainless steel base metal zone. The boundary between the soldering seam zone and the base metal zone is clear and distinct, and the microstructure of the joint is continuous without blowhole, crack or other defects. The microstructure of the soldering joint is mainly composed of black solid solution phase, big rhombic block white phase and short stick white phase. The joint consisted of α-Sn composite phase, SbSn phase and Cu6Sn5 phase. The diffusion layer of FeSn2 metal compound is formed between the filler metal and the base metal with a thickness of 1 − 2 μm. Test results show that the shearing property of joint is about 39 MPa, which can meet the requirement of overlap joint of 304 stainless steel sheet.
-
Key words:
- 304 stainless steel /
- laser soldering /
- microstructure /
- shearing property
-
表 1 304不锈钢的化学成分(质量分数,%)
Table 1. Chemical compositions of 304 stainless steel
C P Si Mn Ni Cr Fe 0.07 ≤0.045 ≤0.030 ≤2.00 8 ~ 11 18 ~ 20 余量 表 2 SnSb8Cu4焊丝的化学成分(质量分数,%)
Table 2. Chemical compositions of SnSb8Cu4 solder wire
Sb Cu Fe As Pb Sn 7.72 3.51 0.005 0.004 0.013 余量 表 3 激光软钎焊工艺参数
Table 3. Laser soldering process parameters
激光功率
P/kW焊接速度
v/(mm·s−1)离焦量
f/mm激光束倾角
θ/(°)0.2 2 300 60 表 4 钎缝EDS 点分析结果(原子分数,%)
Table 4. EDS point analysis results of soldering seam
位置 Sn Sb Cu 可能的化合物 A 56.96 37.71 5.07 SnSb B 57.88 41.85 0.07 SnSb C 63.38 4.44 31.70 Cu6Sn5 D 59.41 4.03 35.65 Cu6Sn5 表 5 钎焊接头抗剪强度
Table 5. Shearing strength of the soldering seam MPa
实测值 平均值 断裂位置 38,40,38 39 钎缝 -
[1] 张青科, 钟素娟, 张雷, 等. 奥氏体不锈钢−铜钎料钎焊界面反应行为分析[J]. 焊接学报, 2017, 38(3): 75 − 78. Zhang Qingke, Zhong Sujuan, Zhang Lei, et al. Investigation on interfacial reaction behavior of brazed joint of austenitic stainless steel/Cu filler metal[J]. Transactions of the China Welding Institution, 2017, 38(3): 75 − 78. [2] 吕学勤, 杨尚磊, 吴毅雄, 等. 铝合金与不锈钢的过渡层钎焊[J]. 焊接学报, 2004, 25(1): 95 − 98,102. doi: 10.3321/j.issn:0253-360X.2004.01.025 Lyu Xueqin, Yang Shanglei, Wu Yixiong, et al. Transitional layers brazing of Al-alloy and stainless steel[J]. Transactions of the China Welding Institution, 2004, 25(1): 95 − 98,102. doi: 10.3321/j.issn:0253-360X.2004.01.025 [3] 张志强, 荆洪阳, 徐连勇, 等. 双相不锈钢多层多道焊接接头微观组织表征[J]. 焊接学报, 2017, 38(5): 79 − 82. doi: 10.12073/j.hjxb.20170518 Zhang Zhiqiang, Jing Hongyang, Xu Lianyong, et al. Microstruc tural characterization of duplex stainless steel multi-pass welded joint[J]. Transactions of the China Welding Institution, 2017, 38(5): 79 − 82. doi: 10.12073/j.hjxb.20170518 [4] 孙志超, 桑健, 隋英杰, 等. 黄铜与304不锈钢的电阻软钎焊封装工艺[J]. 焊接学报, 2019, 40(5): 137 − 142. doi: 10.12073/j.hjxb.2019400141 Sun Zhichao, Sang Jian, Sui Yingjie, et al. Study on brass and 304 stainless steel packaging process by resistance soldering[J]. Transactions of the China Welding Institution, 2019, 40(5): 137 − 142. doi: 10.12073/j.hjxb.2019400141 [5] Liu Jian, Shi Yan, Liu Jia, et al. Effect of shielding gas on laser welding of austenitic stainless steel[J]. Laser & optoelectronics Progress, 2014, 51(5): 051402. [6] 刘龙玺, 钟元木, 马传平, 等. 地铁用SUS301L奥氏体不锈钢激光焊接头残余应力研究[J]. 热加工工艺, 2013, 42(13): 186 − 188. Liu Longxi, Zhong Yuanmu, Ma Chuanping, et al. Research on laser welding joint residual stress of SUS301L austenitic stainless steel for subway[J]. Hot Working Technology, 2013, 42(13): 186 − 188. [7] 张维哲. 304不锈钢薄板激光焊接技术研究 [D]. 大连: 大连理工大学, 2009. Zhang Weizhe. Research on laser welding technology of 304 stainless steel sheet[D]. Dalian: Dalian University of Technology, 2009. [8] Yang Rongtai, Chen Zhiwei. A Study on fiber laser lap welding of thin stainless steel[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(2): 207 − 214. doi: 10.1007/s12541-013-0029-7 [9] Moshayedi H, Sattari-Far I. Resistance spot welding and the effects of welding time and current on residual stresses[J]. Journal of Materials Processing Technology, 2014, 214(11): 2545 − 2552. doi: 10.1016/j.jmatprotec.2014.05.008 [10] 苗刚, 张丹丹, 湛露, 等. 有机硅密封胶强度影响因素的研究[J]. 有机硅材料, 2018, 32(6): 474 − 477. Miao Gang, Zhang Dandan, Zhan Lu, et al. Research on the factors affecting the strength of silicone sealants[J]. Silicone Material, 2018, 32(6): 474 − 477. [11] 顾伟. SMA490BW耐候钢激光填丝焊熔滴过渡行为及接头组织性能研究 [D]. 镇江: 江苏科技大学, 2018. Gu Wei. Study on droplet transition behavior and joint microstructure properties of SMA490BW weathering steel laser wire fill welding[D]. Zhenjiang: Jiangsu University of Science and Technology, 2018. [12] Jadlovsky J, Ilkovic J. Material flow modelling in mechatronic manufacturing system[J]. Procedia Engineering, 2013, 48(3): 345 − 358. [13] Guo Wei, Cai Yan. Effect of laser remelting on microstructure and mechanical properties of CrMnFeCoNi high entropy alloy[J]. China Welding, 2021, 30(2): 1 − 10. [14] Gao Fuyang, Mu Zhuangzhuang, Ma Zhaowei, et al. Fine microstructure characterization of titanium alloy laser narrow gap welded joint[J]. China Welding, 2021, 30(3): 31 − 38. [15] 李时春, 周振红, 莫彬, 等. 激光钎焊多层金刚石磨粒Ni-Cr合金成形工艺研究[J]. 中国机械工程, 2021, 32(8): 967 − 975. doi: 10.3969/j.issn.1004-132X.2021.08.011 Li Shichun, Zhou Zhenhong, Mo Bin, et al. Research on the forming process of Ni-Cr alloy with multi-layer diamond abrasive grains by laser brazing[J]. China Mechanical Engineering, 2021, 32(8): 967 − 975. doi: 10.3969/j.issn.1004-132X.2021.08.011 [16] Lauto A, Kerman I, Ohebshalon M, et al. Two-layer film as a laser soldering biomaterial.[J]. Lasers in Surgery & Medicine, 2015, 25(3): 250 − 256. [17] 马凯. 激光钎焊条件下CuSi3钎料与镀锌钢板界面传质行为的研究 [D]. 上海: 上海工程技术大学, 2015. Ma Kai. Research of interface mass transfer behavior under the condition of laser brazing of Zinc-coated steel with CuSi3 filler metal[D]. Shanghai: Shanghai University of Engineering Science, 2015. [18] 李晋禹, 张明军, 胡永乐, 等. Ni-C合金钎料激光钎焊金刚石表面金属化[J]. 激光技术, 2020, 44(1): 26 − 31. doi: 10.7510/jgjs.issn.1001-3806.2020.01.005 Li Jinyu, Zhang Mingjun, Hu Yongle, et al. Ni-C alloy brazing laser brazed diamond surface metallization[J]. Laser Technology, 2020, 44(1): 26 − 31. doi: 10.7510/jgjs.issn.1001-3806.2020.01.005 [19] 于艳玲. 一种挤压成型的激光熔钎焊方法: 中国, CN201610435765.7 [P]. 2016-06-17. Yu Yanling. A kind of extrusion laser melt brazing method: China, CN201610435765.7[P]. 2016-06-17. [20] Long Weimin, Liu Dashuang, Dong Xian, et al. Laser power effects on properties of laser brazing diamond coating[J]. Surface Engineering, 2020, 36(12): 1315 − 1326. doi: 10.1080/02670844.2020.1758292 [21] Long Weimin, Liu Dashuang, Wu Aiping, et al. Influence of laser scanning speed on the formation property of laser brazing diamond coating[J]. Diamond and Related Materials, 2020, 110: 108085. doi: 10.1016/j.diamond.2020.108085 [22] 孙达, 俞向阳, 周殿宏, 等. Fe固-Sn液反应过程中FeSn2及FeSn生长动力学研究[J]. 有色金属材料与工程, 1992, 13(6): 1 − 5. Sun Da, Yu Xiangyang, Zhou Dianhong, et al. FeSn2 and FeSn growth kinetics during Fe solid-Sn liquid reaction[J]. Nonferrous Metal Materials and Engineering, 1992, 13(6): 1 − 5. -