高级检索

2219-T651铝合金激光摆动焊接接头微观组织和力学性能

刘军, 孟宪国, 李晨曦, 李双吉, 孙泽瑞, 刘宏

刘军, 孟宪国, 李晨曦, 李双吉, 孙泽瑞, 刘宏. 2219-T651铝合金激光摆动焊接接头微观组织和力学性能[J]. 焊接学报, 2023, 44(4): 7-13. DOI: 10.12073/j.hjxb.20220507001
引用本文: 刘军, 孟宪国, 李晨曦, 李双吉, 孙泽瑞, 刘宏. 2219-T651铝合金激光摆动焊接接头微观组织和力学性能[J]. 焊接学报, 2023, 44(4): 7-13. DOI: 10.12073/j.hjxb.20220507001
LIU Jun, MENG Xianguo, LI Chenxi, LI Shuangji, SUN Zerui, LIU Hong. Microstructure and properties of 2219-T651 aluminum alloy welded joint by laser oscillating welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 7-13. DOI: 10.12073/j.hjxb.20220507001
Citation: LIU Jun, MENG Xianguo, LI Chenxi, LI Shuangji, SUN Zerui, LIU Hong. Microstructure and properties of 2219-T651 aluminum alloy welded joint by laser oscillating welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 7-13. DOI: 10.12073/j.hjxb.20220507001

2219-T651铝合金激光摆动焊接接头微观组织和力学性能

基金项目: 国家自然科学基金青年科学基金资助项目(51305335)
详细信息
    作者简介:

    刘军,硕士;主要从事先进材料焊接方面的研究;Email: d20152434@163.com

    通讯作者:

    刘宏,博士,教授;Email: hongliu@mail.xjtu.edu.cn.

  • 中图分类号: TG 442

Microstructure and properties of 2219-T651 aluminum alloy welded joint by laser oscillating welding

  • 摘要: 采用激光摆动焊接技术对2219-T651铝合金进行了不同摆动幅度和频率下的焊接试验,研究了摆动工艺参数、焊缝气孔率和宏观成形、接头组织和性能之间的内在联系. 结果表明,与无摆动焊接相比,激光摆动焊接可以降低焊缝气孔率,尤其随着摆动幅度的增加,当摆动幅度为2.5 mm时,气孔率降至1.66%. 与母材相比,热影响区和熔化区发生软化. 靠近焊缝的热影响区,由于沉淀强化作用的变弱,硬度逐渐降低,直至出现“平台”. 而由α(Al)基体以及枝晶间和晶界α(Al) + θ(Al2Cu)共晶相组成的熔化区,因铜的偏析导致固溶强化效果被削弱,表现出最低的硬度. 此外,部分摆动参数下焊缝晶粒尺寸有所细化,这引起了其硬度的略微升高. 当摆动频率为150 Hz和摆动幅度为2.5 mm时,接头的抗拉强度高达318 MPa,约为母材抗拉强度的69.4%,接头抗拉强度与断口孔洞面积占比呈线性负相关关系,焊缝气孔率是影响焊态接头抗拉强度的主要因素.
    Abstract: Laser oscillating welding technology was applied to 2219-T651 aluminum alloy under different oscillating frequency and amplitude. The corresponding relationships between the oscillating parameters, the weld porosity, the joints formation, the microstructures and properties of the welded joints were revealed. The results show that compared with laser welding, laser oscillating welding can reduce weld porosity. When oscillating amplitude is set at 2.5 mm, the weld porosity can be decreased to 1.66%. In comparison with base metal, the heat-affected zone and the fusion zone are softened. Due to the weakening of the precipitation strengthening effect, the microhardness in the heat-affected zone near the weld gradually decreases until a “platform” appears. Meanwhile, the fusion zone is composed of α(Al) matrix, α(Al) + θ(Al2Cu) eutectic phase distributed between dendrites and grain boundaries. Because of the diminished solid solution strengthening effect caused by Cu segregation, the microhardness in the fusion remain the lowest. Additionally, the grain sizes of the welds are refined under some oscillating parameters, leading to slight increase in the microhardness. The tensile strength of the welded joint reach the highest 318 MPa under the oscillating frequency of 150 Hz and the oscillating amplitude of 2.5 mm, which is approximately 69.4% of that of the base metal. The tensile strength of the welded joint shows negative linear correlation for the area proportion of fracture pores. The weld porosity is the main factor to affect the tensile strength of the welded joint.
  • 图  1   拉伸试样尺寸示意图(mm)

    Figure  1.   Schematic diagram of tensile specimen size

    图  2   焊缝的宏观形貌和X光气孔检测结果

    Figure  2.   Macroscopic morphology and X-ray porosity test results of the welds. (a) without oscillating frequency and amplitude; (b) oscillating frequency 50 Hz, oscillating amplitude1.5 mm; (c) oscillating frequency 150 Hz, oscillating amplitude1.5 mm; (d) oscillating frequency 400 Hz, oscillating amplitude1.5 mm; (e) oscillating frequency 150 Hz, oscillating amplitude 0.5 mm; (f) oscillating frequency 150 Hz, oscillating amplitude 2.5 mm

    图  3   不同摆动频率和幅度下焊缝气孔率

    Figure  3.   Weld porosity under different oscillating frequency and amplitude. (a) oscillating amplitude1.5 mm; (b) oscillating frequency 150 Hz

    图  4   无摆动焊接接头的微观组织

    Figure  4.   Microstructure of the non-oscillating welded joint. (a) integral joint; (b) weld center; (c) HAZ; (d) BM

    图  5   不同摆动频率和幅度下焊缝中心微观组织

    Figure  5.   Microstructure of the welds center under different oscillating frequency and amplitude. (a) without oscillating frequency and amplitude; (b) oscillating frequency 50 Hz, oscillating amplitude 1.5 mm; (c) oscillating frequency 150 Hz, oscillating amplitude 1.5 mm; (d) oscillating frequency 400 Hz, oscillating amplitude1.5 mm; (e) oscillating frequency 150 Hz, oscillating amplitude 0.5 mm; (f) oscillating frequency 150 Hz, oscillating amplitude 2.5 mm

    图  6   不同摆动频率和幅度下接头的显微硬度

    Figure  6.   Microhardness of the joints under different oscillating frequency and amplitude.(a) without oscillating frequency and amplitude; (b) oscillating frequency 50 Hz, oscillating amplitude 1.5 mm; (c) oscillating frequency 150 Hz , oscillating amplitude1.5 mm; (d) oscillating frequency 400 Hz,oscillating amplitude1.5 mm; (e) oscillating frequency 150 Hz, oscillating amplitude 0.5 mm; (f) oscillating frequency 150 Hz, oscillating amplitude 2.5 mm

    图  7   不同摆动频率和幅度下接头的抗拉强度

    Figure  7.   Tensile strength of the joints under different oscillating frequency and amplitude. (a) oscillating amplitude 1.5 mm; (b) oscillating frequency 150 Hz

    图  8   不同摆动频率和幅度下接头的断口宏观形貌

    Figure  8.   Fracture macroscopic morphology of the joints under different oscillating frequency and amplitude.(a) without oscillating frequency and amplitude; (b) oscillating frequency 50 Hz, oscillating amplitude 1.5 mm; (c) oscillating frequency 150 Hz, oscillating amplitude1.5 mm; (d) oscillating frequency 400 Hz, oscillating amplitude 1.5 mm; (e) oscillating frequency 150 Hz, oscillating amplitude 0.5 mm; (f) oscillating frequency 150 Hz, oscillating amplitude 2.5 mm

    图  9   不同摆动频率和幅度下接头的断口孔洞面积占比及与抗拉强度关系

    Figure  9.   Ratio of fracture hole area of the joints under different oscillating frequency and amplitude as well as corresponding relationship to the tensile strength. (a) oscillating amplitude 1.5 mm; (b) oscillating frequency 150 Hz; (c) relationship between ratio of fracture hole area and tensile strength

    表  1   2219-T651铝合金化学成分(质量分数,%)

    Table  1   Chemical compositions of 2219-T651 Al alloy

    CuMnFeTiZnSiAl
    6.620.270.110.040.040.04余量
    下载: 导出CSV

    表  2   不同摆动频率和幅度下接头宏观成形

    Table  2   Formation of joints under different oscillating frequency and amplitude

    摆动频率
    f/Hz
    摆动幅度
    A/mm
    熔宽
    w/mm
    熔深
    h/mm
    气孔率
    P(%)
    003.93.68.81
    501.54.03.47.14
    1501.54.53.25.56
    4001.54.43.17.29
    1500.54.13.77.66
    1502.54.72.71.66
    下载: 导出CSV

    表  3   无摆动焊接接头的能谱分析结果(质量分数,%)

    Table  3   EDS results of the non-oscillating welded joint

    位置AlCu可能相
    198.141.86α
    278.4521.55α + θ
    393.096.91α
    478.1721.83α + θ
    594.425.58α
    677.6422.36α + θ
    758.6641.34θ
    下载: 导出CSV
  • [1] 康悦, 赵艳秋, 李悦, 等. 驱动力对2219铝合金DLBSW焊接熔池行为的影响[J]. 焊接学报, 2022, 43(2): 82 − 87.

    Kang Yue, Zhao Yanqiu, Li Yue, et al. Effect of driving force on molten pool behavior of 2219 aluminum alloy DLBSW process[J]. Transactions of the China Welding Institution, 2022, 43(2): 82 − 87.

    [2] 张聃, 陈文华, 孙耀华, 等. 焊接方法对2219铝合金焊接接头力学性能的影响[J]. 航空材料学报, 2013, 33(1): 45 − 49.

    Zhang Dan, Chen Wenhua, Sun Yaohua, et al. Analysis of mechanical properties about the welding joints of 2219 aluminum alloy[J]. Journal of Aeronautical Materials, 2013, 33(1): 45 − 49.

    [3] 巩水利, 姚伟, Steve Shi. 铝合金激光深熔焊气孔形成机理与控制技术[J]. 焊接学报, 2009, 30(1): 60 − 62,116.

    Gong Shuili, Yao Wei, Steve Shi. Porosity formation mechanisms and controlling technique for laser penetration welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2009, 30(1): 60 − 62,116.

    [4]

    Liu C, He J. Numerical analysis of fluid transport phenomena and spiking defect formation during vacuum electron beam welding of 2219 aluminium alloy plate[J]. Vacuum, 2016, 132: 70 − 81. doi: 10.1016/j.vacuum.2016.07.033

    [5]

    Wan Zhangdong, Meng Danyang, Zhao Yue, et al. Improvement on the tensile properties of 2219-T8 aluminum alloy TIG welding joint with weld geometry optimization[J]. Journal of Manufacturing Processes, 2021, 67: 275 − 285. doi: 10.1016/j.jmapro.2021.04.062

    [6] 丁吉坤, 宋建岭, 韩国良, 等. 2219厚板铝合金VPTIG焊接接头组织及性能[J]. 焊接, 2020(4): 47 − 51,64.

    Ding Jikun, Song Jianling, Han Guoliang, et al. Microstructure and properties of VPTIG welded joints of 2219 aluminum alloy thick plate[J]. Welding & Joining, 2020(4): 47 − 51,64.

    [7]

    Hui L, Zou J, Yao J, et al. The effect of TIG welding techniques on microstructure, properties and porosity of the welded joint of 2219 aluminum alloy[J]. Journal of Alloys and Compounds, 2017, 727: 531 − 539. doi: 10.1016/j.jallcom.2017.08.157

    [8]

    Schultz V, Seefeld T, Vollertsen F. Gap Bridging Ability in Laser Beam Welding of Thin Aluminum Sheets[J]. Physics Procedia, 2014, 56: 545 − 553. doi: 10.1016/j.phpro.2014.08.037

    [9]

    Wang Z, Oliveira J P, Zeng Z, et al. Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties[J]. Optics and Laser Technology, 2019, 111: 58 − 65. doi: 10.1016/j.optlastec.2018.09.036

    [10]

    Kim C, Kang M, Kang N. Solidification crack and morphology for laser weave welding of Al 5J32 alloy[J]. Science and Technology of Welding and Joining, 2013, 18(1): 57 − 61. doi: 10.1179/1362171812Y.0000000073

    [11]

    Yamazaki Y, Abe Y, Hioki Y, et al. Fundamental study of narrow-gap welding with oscillation laser beam[J]. Welding International, 2016, 30(9): 699 − 707. doi: 10.1080/09507116.2016.1142193

    [12]

    Wang L, Gao M, Zhang C, et al. Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy[J]. Materials & Design, 2016, 108: 707 − 717. doi: 10.1016/j.matdes.2016.07.053

    [13]

    Wu Q, Xiao R S, Zou J L, et al. Weld formation mechanism during fiber laser welding of aluminum alloys with focus rotation and vertical oscillation[J]. Journal of Manufacturing Processes, 2018, 36: 149 − 154. doi: 10.1016/j.jmapro.2018.10.004

    [14]

    Fetzer F, Sommer M, Weber R, et al. Reduction of pores by means of laser beam oscillation during remote welding of AlMgSi[J]. Optics and Lasers in Engineering, 2018, 108: 68 − 77. doi: 10.1016/j.optlaseng.2018.04.012

    [15]

    Jiang Z G, Chen X, Hao L, et al. Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy[J]. Materials & Design, 2020, 186: 108195. doi: 10.1016/j.matdes.2019.108195

    [16]

    Shi L, Li X, Jiang L, et al. Numerical study of keyhole-induced porosity suppression mechanism in laser welding with beam oscillation[J]. Science and Technology of Welding and Joining, 2021, 26(5): 349 − 355.

    [17]

    Niu Lanqiang, Li Xiaoyan, Zhang Liang, et al. Correlation between microstructure and mechanical properties of 2219-T8 aluminum alloy joints by VPTIG welding[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(5): 438 − 446. doi: 10.1007/s40195-016-0516-9

    [18]

    Kou S. Welding metallurgy[M]. Second edition. New Jersey: John Wiley and Sons Inc, 2003.

  • 期刊类型引用(4)

    1. 周金旭,王东辉,叶树茂,刘迪,金鑫,恒俊楠. 铝合金薄板脉冲激光焊接工艺及接头组织特征研究. 有色金属加工. 2025(02): 34-40 . 百度学术
    2. 苗晓军,韩丽娟,李凯,王磊,姜来合格,廖伟,高明. 铝合金高频振荡扫描激光-电弧复合焊缝成形规律与预测. 焊接学报. 2024(07): 83-91 . 本站查看
    3. 陈健豪,何志强,蒯夕伟,孟燕菲,邓礼兵. 储能电池用铝合金环形激光焊接特性研究. 机电工程技术. 2024(09): 135-139 . 百度学术
    4. 郭克星. 铝合金激光焊接技术研究进展. 热处理. 2024(06): 1-7 . 百度学术

    其他类型引用(2)

图(9)  /  表(3)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  32
  • PDF下载量:  71
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-05-06
  • 网络出版日期:  2023-04-17
  • 刊出日期:  2023-04-24

目录

    /

    返回文章
    返回