高级检索
马瑞, 刘林川, 王亚军, 白洁, 檀财旺, 宋晓国. 固溶温度对激光粉末床熔化GH3536合金组织演变及力学性能影响[J]. 焊接学报, 2022, 43(8): 73-79. DOI: 10.12073/j.hjxb.20220504002
引用本文: 马瑞, 刘林川, 王亚军, 白洁, 檀财旺, 宋晓国. 固溶温度对激光粉末床熔化GH3536合金组织演变及力学性能影响[J]. 焊接学报, 2022, 43(8): 73-79. DOI: 10.12073/j.hjxb.20220504002
Rui MA, Linchuan LIU, Yajun WANG, Jie BAI, Caiwang TAN, Xiaoguo SONG. Effect of solution temperature on the microstructure evolution and mechanical properties of laser powder bed melting GH3536 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 73-79. DOI: 10.12073/j.hjxb.20220504002
Citation: Rui MA, Linchuan LIU, Yajun WANG, Jie BAI, Caiwang TAN, Xiaoguo SONG. Effect of solution temperature on the microstructure evolution and mechanical properties of laser powder bed melting GH3536 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 73-79. DOI: 10.12073/j.hjxb.20220504002

固溶温度对激光粉末床熔化GH3536合金组织演变及力学性能影响

Effect of solution temperature on the microstructure evolution and mechanical properties of laser powder bed melting GH3536 alloy

  • 摘要: 利用激光粉末床熔化(laser powder bed melting, LPBF)制造GH3536镍基高温合金,通过研究不同激光功率和扫描速度对缺陷数量的影响,进行工艺参数优化. 为了缓解沉积态组织的各向异性,消除残余应力,对LPBF制造合金进行固溶处理,探究不同固溶温度对组织及力学性能影响规律. 借助扫描电子显微镜(SEM)和配套的电子背散射仪(EBSD)对试样的显微组织进行观察,并进行力学性能测试. 结果表明,随着固溶温度的升高,沉积态熔池轮廓消失,碳化物溶解,小角度晶界数量减少. 1 100 ℃固溶试样常温拉伸的屈服强度为450 MPa,随着固溶温度的升高,小角度晶界对位错运动的阻碍减弱,屈服强度降低,经过1 220 ℃固溶,试样屈服强度为315 MPa. 1 100 ℃固溶试样的高温抗拉强度为220 MPa,高温拉伸时碳化物沿晶界析出导致晶界脆化,随着固溶温度的增加,沿晶界分布的碳化物数量减少,抗拉强度逐渐增大.

     

    Abstract: GH3536 nickel-based superalloy was fabricated by laser powder bed melting (LPBF). The effect of different laser power and scanning speed on the number of defects was studied, and the process parameters were optimized. In order to alleviate the anisotropy of the deposited microstructure and eliminate the residual stress, LPBF alloy was treated with solution heat-treatment, and the effect of solution temperature on microstructure and mechanical properties was investigated. Through the characterization of grain size, carbide distribution and grain boundary type, it was found that with the increase of solution heat-treatment temperature, the deposited microstructure disappeared, carbide dissolved, and the number of small angle grain boundary decreased. According to the mechanical properties test, the tensile yield strength at room temperature of solution heat-treated sample with 1100 ℃ was 450 MPa. With the increase of solution heat-treatment temperature, the resistance of small angle grain boundary to dislocation movement weakened and the yield strength decreased. The yield strength of 1220 ℃ solution sample was 315 MPa. The high temperature tensile strength of 1100 ℃ solution sample was 220 MPa, and the carbides precipitated along grain boundaries at high temperature. With the increase of solution heat-treatment temperature, the quantity of carbides distributed along grain boundaries decreased, and the tensile strength increased gradually.

     

/

返回文章
返回