高级检索

激光增材制造AlSi10Mg合金的力学性能研究进展

奥妮, 何子昂, 吴圣川, 彭鑫, 吴正凯, 张振先, 祝弘滨

奥妮, 何子昂, 吴圣川, 彭鑫, 吴正凯, 张振先, 祝弘滨. 激光增材制造AlSi10Mg合金的力学性能研究进展[J]. 焊接学报, 2022, 43(9): 1-19. DOI: 10.12073/j.hjxb.20220413002
引用本文: 奥妮, 何子昂, 吴圣川, 彭鑫, 吴正凯, 张振先, 祝弘滨. 激光增材制造AlSi10Mg合金的力学性能研究进展[J]. 焊接学报, 2022, 43(9): 1-19. DOI: 10.12073/j.hjxb.20220413002
AO Ni, HE Ziang, WU Shengchuan, PENG Xin, WU Zhengkai, ZHANG Zhenxian, ZHU Hongbin. Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 1-19. DOI: 10.12073/j.hjxb.20220413002
Citation: AO Ni, HE Ziang, WU Shengchuan, PENG Xin, WU Zhengkai, ZHANG Zhenxian, ZHU Hongbin. Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 1-19. DOI: 10.12073/j.hjxb.20220413002

激光增材制造AlSi10Mg合金的力学性能研究进展

基金项目: 国家自然科学基金委大科学装置联合基金资助项目(U2032121);牵引动力国家重点实验室自主课题(2022TPL-T12)
详细信息
    作者简介:

    奥妮,博士,助理研究员;主要研究方向为材料与结构的损伤、疲劳与断裂;Email: aoni@swjtu.edu.cn

    通讯作者:

    吴圣川,博士,研究员;Email: wusc@swjtu.edu.cn.

  • 中图分类号: TG 421

Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy

  • 摘要: 增材制造是近几十年发展起来的一种先进金属件近净成形技术,具有低能耗、短周期、高柔性、低成本等显著优势,已成为先进装备领域的前沿制造技术之一. 与传统铸造相比,增材铝合金具有相当甚至更优的力学性能. 然而,相关质量评估标准缺乏和疲劳性能分散性较大等问题限制了其在重大工程装备中的应用. 重点以选区激光熔化成形的AlSi10Mg合金为对象,从“制造工艺—仿真模拟—性能评价”角度,系统分析了增材制造工艺参数、建造方向和热处理制度等几个重要因素对铝合金微观结构及力学性能的影响,总结了增材热力学过程模拟与力学性能的相关仿真研究现状,重点探讨了目前增材制造铝合金力学性能评价的国内外进展,并进一步归纳了基于组分调控提升铝合金力学性能的相关研究结果,最后对其发展趋势进行了展望.
    Abstract: Additive manufacturing is an advanced near net forming technology for advanced metal components developed in recent decades. With the unique advantages of low energy consumption, short cycle, high flexibility and low cost, metal additive manufacturing has become one of the most advanced cutting-edge processing technologies in the field of large-scale key engineering equipment. Compared with traditional casting, the comparable or better mechanical properties are obtained for additive manufacturing aluminum alloys. However, the problems of lacking relevant quality assessment standards and the large dispersion of fatigue strength seriously limit its wide application in key metal equipment. The AlSi10Mg alloy formed by selective laser melting is focused in the present study as the model material. From the perspective viewpoint of " manufacturing process-numerical simulation-performance evaluation", the effects of several important factors such as process parameters, building orientation and heat treatment on the microstructure and mechanical properties of aluminum alloy in additive manufacturing process are analyzed systematically. The research status of the thermodynamic process simulation of additive manufacturing and the simulation of mechanical properties is summarized. This paper focuses on the current domestic and abroad research progress in mechanical property evaluation of additive manufacturing aluminum alloy. Further, the research on improving mechanical properties of aluminum alloy based on component regulation is concluded. Finally, its development trend is prospected.
  • 在冶金、汽车、航空航天等工业领域中存在许多用于重载、高速、缺氧等环境下运行的摩擦运动副零部件,如柱塞泵缸体、气缸套、叶片等,在这样较为恶劣的工况下,摩擦运动副表面极易磨损,导致相关机构及零部件损毁失效,因此提高其表面耐磨减摩性具有重要意义[1-2].

    金属基自润滑复合材料是以金属为主体,加入固体润滑材料以及一些附加成分,并经过适当的工艺所制备出来,综合了金属板材的力学性能和固体润滑材料优异的润滑性能,具有良好的摩擦学特性,可适应上述等特殊工况下的工作[3].几种常用的表面涂层技术,例如等离子喷涂、化学镀、激光熔覆均可以用来制备复合涂层,其中激光熔覆拥有能量密度高、热影响区小、基材与涂层良好的冶金结合等特点,具有明显的优势[4].目前金属基自润滑涂层以Ni基,Co基,Fe基等合金材料应用较为广泛,其中Ni基合金相较于Fe基合金有着更优的耐蚀性及抗氧化性,在高温性能方面不如Co基合金,但在Ni基中加入合适元素在高温下依然能维持良好抗氧化性能[5].Zhang等人[6]采用激光熔覆技术在45号钢表面制备了无裂纹的Ni60涂层,结果表明,涂层的显微硬度约为基体的2.6倍,且磨损率约为基体的磨损率的1/6.2,磨损性能得到了显著提升,但纯Ni基涂层的硬度及耐磨性往往还达不到实际工况的要求.为了提高表面的耐磨和耐腐蚀性能,涂层中通常会添加TiC,WC,SiC等作为增强相,而SiC具有硬度高、耐磨耐蚀、热膨胀系数小等一系列优点[7].二硫化钼MoS2与石墨和六方氮化硼一样为层状结构[8],其晶体由共价键合的薄片堆叠而成,片与片之间为弱范德华相互作用,因此具有较低的摩擦系数,特别是在缺氧及干燥环境下,可以长时间保持优异的自润滑性能.Zhai等人[9]采用激光熔覆技术在45号钢表面研究了不同MoS2添加量对熔覆层组织和耐磨减摩性能影响,结果表明,随MoS2含量增加,微观组织细化,摩擦系数先减小后增大,当MoS2含量为5%时,摩擦系数降幅最大,磨损量最小,耐磨性能比45号钢基体提高了79%.这里将SiC的耐磨特性与MoS2的自润滑特性相结合,对所制得的复合涂层的摩擦学性能会有重要影响.由于MoS2与金属的润湿性差且熔点低,在激光照射过程中容易烧损或以飞溅的形式流失,导致在涂层中沉积率降低,而软金属铜具有优异的润滑性能,可与MoS2进行组合润滑且Cu对激光的吸收率高[10],一定程度上可减小熔敷过程中的飞溅,二者可予以结合来缓解MoS2损失. Shin等人[11]通过磁控溅射在 Si 晶片和 AISI 304 基板上制备三元 Mo-Cu-N 涂层,发现随着Cu含量的增加,Mo-Cu-N 涂层的平均摩擦系数从 0.40 降低到 0.21.作为一种润滑剂,铜的添加可以在很宽温度范围内降低摩擦系数,同时铜在镍基合金中具有良好的润湿性[12],可以完全溶解在镍基中形成固溶体.将nano-Cu包覆于MoS2表面来提高与镍基合金的相容性,和MoS2粉末沉积率不失为一种有效方法.目前关于使用纳米铜包覆MoS2的激光熔覆复合涂层自润滑性能的数据很少,文中采用纳米Cu包覆MoS2,旨在提高MoS2与镍基合金的相容性,使涂层具有耐磨性质的同时亦能降低摩擦系数达到减摩效果,并讨论了不同润滑剂含量对复合涂层组织和摩擦磨损性能的影响.

    基板材料为42CrMo钢板,试样尺寸为ϕ150 mm × 10 mm,试验前先用砂纸将基板表面打磨处理去除表面氧化膜,再用丙酮去除油渍、酒精清洗,熔覆材料选用目数均为300的Ni60,SiC和MoS2粉末,以及500 nm的高纯铜粉,Ni60自熔性合金粉末的化学成分见表1.

    表  1  Ni60合金粉末的化学成分(质量分数,%)
    Table  1.  Chemical compositions of Ni60 alloy powder
    CrBCSiFeNi
    163.30.94.5≤8.0余量
    下载: 导出CSV 
    | 显示表格

    将MoS2与nano-Cu按1∶2的体积比通过高能球磨方式进行球磨,球料比10∶1,持续1小时,以确保nano-Cu包覆的均匀性.图1为Ni60和nano-Cu/MoS2粉末的形貌,证明纳米铜颗粒包覆在MoS2颗粒的表面,其次,将不同质量百分比的Ni60,SiC和nano-Cu/MoS2粉末进行低速球磨混合,详细配比可见表2.

    图  1  Ni60和nano-Cu/MoS2粉末的形貌
    Figure  1.  Morpholigy of Ni60 powder and nano-Cu/MoS2 poeder. (a) Ni60; (b) nano-Cu/MoS2; (c) distribution of Cu elements in Fig.1(b); (d) enlarged view of nano-Cu/MoS2
    表  2  不同熔覆层合金粉末的化学成分(质量分数,%)
    Table  2.  Chemical compositions of alloy powder for different cladding layers
    样品编号 Ni60 SiC Nano-Cu/MoS2
    C1 90 10
    C2 85 10 5
    C3 80 10 10
    C4 75 10 15
    下载: 导出CSV 
    | 显示表格

    采用预置粉末法,利用刮刀将混合粉末平铺在基板表面并放入干燥箱100 ℃下预热1 h,使用LWS-1000型Nd∶YAG激光器在气流量为11 L/min的氩气保护下进行激光熔覆,工艺参数为激光功率290 W、扫描速度6 mm/s、光斑直径1 mm,熔覆后将试样沿横截面切割,对切割后的试样打磨、抛光,再用50%的王水溶液腐蚀,腐蚀时间为15 s,采用Regulus8230型扫描电子显微镜及能谱(energy dispersive spectrometer,EDS)对熔覆样进行微观组织和成分分析,采用X'Pert PRO MPD型X射线衍射仪对熔覆层进行物相检测,使用VTD401数显显微维氏硬度计测量熔覆层的硬度分布,载荷为0.49 N,加载时间为10 s,采用推力垫圈试验机进行摩擦磨损试验,摩擦磨损试验前在熔覆层切取圆柱试样,尺寸为ϕ 10 mm × 10 mm,对磨副材料选用Cr12钢,硬度达到64 HRC,形状为ϕ 20 mm × 5 mm的圆片.试验在室温下进行,载荷为50 N,摩擦线速度为25 mm/s,磨损时间为20 min,磨损质量用精度为10−4 g电子称测量.

    图2为4种不同含量nano-Cu/MoS2镍基合金熔覆层的XRD图谱,由图2结果可知,不加nano-Cu/MoS2时熔覆层中主要的物相为(Fe,Ni),碳铬化合物Cr7C3和CrB硼铬化合物并未显示出明显的SiC峰,这是由于激光熔覆产生的熔池温度高,使得SiC粉末在熔池对流中发生分解,形成C,Si,同时与镍基合金粉末中B,Cr,Fe形成新的具有高硬度的Cr7C3,CrB等硬质相.当加入nano-Cu/MoS2后,熔覆层产生了CrS,Cu和MoNi等新相,随着含量从5%、10%、15%增加相应的峰得到了明显的增强而未检测到明显的MoS2峰,可能高温下分解成了S和Mo. XRD表明润滑剂的加入会和镍基合金以及基体元素发生复杂的化学反应,润滑剂分解出的S和Mo分别和Cr,Ni等元素生成了CrS,MoNi等化合物,包覆的润滑剂加入对熔覆层物相新添了硫化物和软金属铜.

    图  2  不同nano-Cu/MoS2含量熔覆层的XRD结果
    Figure  2.  XRD results of different nano-Cu/MoS2 contents cladding layers

    图3为不同含量nano-Cu/MoS2镍基合金熔覆层的微观组织形貌.熔覆层的区域可分为上部区域和接近熔合线的中下部区域,其上部区域主要由细密等轴晶组成,而中下部多由方向各异的条柱状晶构成,这是由于激光熔覆具有热输入大冷却速度快的优点,靠近熔合线的中下部温度梯度与冷却速度比值高促进了条柱状晶生成,反之顶部区域比值较低晶粒迅速形核后未来得及长大便已凝固形成了细小等轴晶粒.图3(a)为不含nano-Cu/MoS2熔覆层的中部区域组织,在条状晶间布满丰富的细晶以及部分枝晶,无裂纹无孔隙且组织致密.结合XRD的结果可知,SiC粉末在高温下分解形成的C,Si元素与镍基合金粉末中B,Cr,Fe元素形成了新的具有高硬度的Cr7C3,CrB等相对组织具有显著细化作用.采用EDS分析图3(a)~图3(f)中细晶粒块A化学成分见表3,该细晶组织富含Fe,Cr,Ni,可能由γ-Ni细晶和枝晶多元共晶组成且晶界处存在Cr,Ni偏聚.另外,图3中A ~ E区域细晶组织的Fe元素含量远高于预设,说明在激光熔覆的高温下,基体中的Fe元素扩散进熔池对覆层元素产生了明显的稀释,这与表3能谱结果相吻合.图3(b) ~ 图3(d)中nano-Cu/MoS2含量分别为5%、10%、15%熔覆层的显微组织发生了明显变化,排列紧密的一部分细晶逐渐转变为条带状组织,这是质软的润滑相加入影响了组织的生长分布.图3(g) ~ 图3(i)为nano-Cu/MoS2含量15%熔覆层,图3(d)中Cu,S,Mo分布状况,可知S,Mo分布区域基本一致,分析认为是留存的MoS2,由于基体Fe元素进入覆层较多导致稀释率较高,因此XRD图谱中未显示出明显的MoS2谱峰.图3(b)可以看出,除了平行分布的条带状组织和块状细晶组织在晶界处圈出区域还存在较少的黑色点状区域,初步猜测可能是熔覆过程中部分MoS2分解产生的SO2气体未及时溢出形成的气孔.随着润滑相含量增加,图3(c) ~ 图3(f)覆层组织中黑点增多如框选区域,但数量较少.采用EDS对图3(e)高倍下即图3(f)黑点区域分析其成分见表3中E所示,该区域富集S、Mo元素,根据元素分布规律及含量,应是未熔留存的MoS2.

    图  3  不同含量nano-Cu/MoS2显微组织及区域EDS元素分布
    Figure  3.  Microstructure and regional EDS element distribution of nano-Cu/MoS2 cladding layer with different content. (a) middle of C1; (b) middle of C2; (c) middle of C3; (d) middle region of C4; (e) top region of C4; (f) top region of C4 at high magnification; (g) Cu distribution in C4; (h) S distribution in C4; (i) Mo distribution in C4
    表  3  C1~C4不同区域的EDS分析结果(质量分数, %)
    Table  3.  Results of EDS analysis for different regions of C1 ~ C4
    区域 B C Si S Fe Ni Cr Mo Cu
    A 4.29 9.04 1.49 76.12 6.32 2.73
    B 2.54 9.8 1.47 77.40 6.35 2.43
    C 8.15 1.43 0.01 73.36 10.53 6.07 0.45
    D 6.31 1.38 0.03 81.65 6.93 2.76 0.13 0.82
    E 10.31 1.30 0.07 76.44 8.11 3.19 0.26 0.31
    下载: 导出CSV 
    | 显示表格

    图4为不同nano-Cu/MoS2含量的镍基熔覆层显微硬度沿深度的变化.可以看到,在基板表面制备金属基镍基复合熔覆层可以显著提升其表面硬度,从涂层表面到基体界面硬度呈下降的趋势,符合涂层中相的分布. C1 ~ C4表面平均硬度分别486.52,377.42,369.92,342.46HV0.1,约为母材的1.45 ~ 2.06倍(母材约为236.62 HV0.1). 无nano-Cu/MoS2的熔覆层C1显微硬度与C2 ~ C4比明显要高,添加的SiC颗粒在熔池中会分解成C与Si,C与Cr,Fe形成高硬度的Cr7C3等新相弥散在熔覆层中起到第二相强化作用,提高了涂层的硬度.

    图  4  不同nano-Cu/MoS2含量熔覆层沿深度的硬度分布
    Figure  4.  Hardness distribution along the depth of the cladding layer with different nano-Cu/MoS2 content

    此外,由覆层表面至熔合线附近硬度呈下降趋势,结合前面对显微组织的分析可知,沿深度方向硬度不同是由于激光熔覆具有快速结晶冷却的特点.在温度梯度与凝固速度比值的影响下覆层顶部主要为细密的等轴晶组成,中下部由方向各异的条状晶形成,由于细晶强化的作用导致顶部的硬度要高于熔覆层的底部.另一方面,由于稀释率的影响,基体大量Fe元素扩散进熔池的底部也会降低覆层中下部的显微硬度.而当引入润滑相nano-Cu/MoS2时,相比C1,C2 ~ C4熔覆层整体硬度值发生了显著下降,随着润滑相含量增加可见熔覆层硬度有所降低.这是因为覆层的显微硬度与其硬质相含量有着密切联系,质地较软的nano-Cu/MoS2 加入导致涂层的整体硬度下降,另外,高温下MoS2分解出的S元素同基体与Ni60中的Cr结合生成的铬的硫化物亦是一种对硬度不利的相.

    对C1 ~ C4不同含量nano-Cu/MoS2的镍基合金熔覆层在室温下进行了摩擦磨损试验,表4为C1 ~ C4熔覆层的摩擦系数及磨损失重情况,对比表4中C1 ~ C4组的磨损失重和摩擦系数发现,随着nano-Cu/MoS2含量增加,其质量损失呈上升趋势,摩擦系数逐渐减小,耐磨性能有所降低并表现了一定的减摩性能.图5为试验后不同涂层表面SEM,其中C1涂层表面的磨痕窄而浅见图5(a),留下了一些深浅不一的犁沟,这是由涂层中硬质颗粒脱落磨削所造成的主要表现为磨粒磨损,此时磨损失重最小,为0.008 4 g,摩擦系数为0.517 5,具有良好耐磨性. 当加入nano-Cu/MoS2从5%、10%增加到15%时,质量损失分别为0.014 7、0.017 3和0.019 8,覆层失重增加而滑动摩擦系数逐渐减小,到C4的摩擦系数为0.443 0.一方面由Archard定律可知[13],材料硬度与其耐磨性能呈正相关,硬度较高时具有良好的抗塑性变形能力,质地较软的润滑剂加入降低了涂层的硬度,在载荷不变的情况下失重相对增加. 图5(b) ~ 图5(d)中C2 ~ C4磨损表面均黏着了一些摩擦产物,这是因为随着nano-Cu/MoS2含量增加,覆层里弥散的软金属铜和未熔化的MoS2以及新生成的硫化物变多,在摩擦时覆层接触面产生形变,弥散分布的Cu和MoS2脱落黏附在摩擦面与磨粒混合逐渐形成一层具减摩效果的润滑薄膜,阻止了与摩擦副间的直接接触的同时有一定润滑作用,降低了摩擦系数,表现为黏着磨损和磨粒磨损结合的复合磨损. 从C2到C4硬度逐渐降低而此时相对应的质量损失增加,可见覆层硬度对磨损失重有重要影响,硬度越高质量损失越低.上述探究表明,nano-Cu/MoS2镍基合金熔覆层确实具有明显耐磨、减摩效果,C4虽然摩擦系数最低但摩擦质量损失较多且力学性能相对较差,而C3具有一定减摩效果同时兼具较高的硬度,综合涂层的力学性能和摩擦系数及磨损质量损失情况,优选制备参数为10%nano-Cu/MoS2.

    表  4  不同nano-Cu/MoS2含量熔覆层的摩擦系数及磨损量(质量损失)
    Table  4.  Friction factor and wear loss of cladding layers with different nano-Cu/MoS2 contents
    式样
    编号
    试验前重量
    m1/g
    试验后质量
    m2/g
    质量损失
    Δm /g
    摩擦系数
    µ
    C1 5.455 7 5.447 3 0.008 4 0.517 5
    C2 5.390 2 5.375 5 0.014 7 0.498 5
    C3 4.301 9 4.284 6 0.017 3 0.479 3
    C4 5.413 9 5.394 1 0.019 8 0.443 0
    下载: 导出CSV 
    | 显示表格
    图  5  不同nano-Cu/MoS2含量下熔覆层表面摩擦磨损形貌
    Figure  5.  Friction and wear morphology of cladding layer surfaces with different nano-Cu/MoS2 contents. (a) 0; (b) 5%; (c) 10%; (d) 15%

    (1)采用激光熔覆技术制备了镍基合金复合涂层,熔覆层成型良好且组织致密,其中上部区域主要由细密等轴晶组成,中下部由方向各异的条柱状晶组成,与基体实现了冶金结合,加入质软的nano-Cu/MoS2后涂层组织发生明显变化,部分细晶转变为条带状,晶界附近分布一些细小黑色颗粒MoS2.

    (2)激光熔覆过程中nano-Cu/MoS2粉末基本分解为相应的元素,仅有部分进入熔覆层,分解形成的Mo,S元素,与合金粉末产生新的化学反应,其中的S与Cr形成硫化物CrS并引入了新相软金属Cu,同时由于nano-Cu的包覆作用使得少量MoS2留存并弥散分布在晶界附近,而金属硫化物及残留MoS2和软金属铜的存在加上部分组织的粗化,使得覆层的硬度有一定的下降.

    (3)随着润滑相nano-Cu/MoS2含量的增加,金属硫化物及残留MoS2和软金属铜的量增多,加上部分组织晶粒的粗化影响,使得熔覆层硬度相比未添加前有所降低,但与基体硬度相比约有1.45 ~ 2.06倍,仍然表现了较好的力学性能,而随着硬度降低相对应的摩擦质量损失也会增加,但同时覆层的减摩性能获得提升,摩擦系数逐渐降低.

    (4) nano-Cu/MoS2镍基合金熔覆层确实具有明显耐磨、减摩效果,综合摩擦系数和摩擦质量损失考虑,激光熔覆层制备参数组合为10%nano-Cu/MoS2,激光功率290 W、扫描速度6 mm/s时其熔覆层力学及摩擦学性能为佳.

  • 图  1   激光增材制造金属零件建造方向示意图[40]

    Figure  1.   Schematic of building orientation of laser AM metal parts. (a) normal view of yOz plane; (b) normal view of xOy plane

    图  2   建造方向对SLM AlSi10Mg合金拉伸性能的影响

    Figure  2.   Effect of build orientation on tensile properties of SLM AlSi10Mg alloys

    图  3   热处理制度对选区激光熔化AlSi10Mg铝合金拉伸性能的影响[10,13,48-60]

    Figure  3.   Effect of heat treatment technology on tensile properties of SLM AlSi10Mg alloy. (a) tensile strength and yield strength; (b) elongation

    图  4   选区激光熔化热力学过程模拟

    Figure  4.   Thermodynamic process simulation of SLM. (a) mesh model of powder bed; (b) temperature field contour of melt pool

    图  5   选区激光熔化AlSi10Mg铝合金椭球形缺陷的Mises应力云图

    Figure  5.   Mises stress distribution of ellipsoidal defect of SLM AlSi10Mg alloys

    图  6   基于缺陷表征技术的疲劳性能评价流程[48,78-80]

    Figure  6.   Fatigue performance evaluation based on defect representation technology

    图  7   兼容于上海同步辐射光源的原位拉伸试验机[80, 90]

    Figure  7.   In-situ tensile testing machine compatible with Shanghai synchrotron radiation source. (a) image of real products; (b) design drawing

    图  8   选区激光熔化AlSi10Mg合金标准和基于El-Haddad模型修正的K-T图[48]

    Figure  8.   Standard and modified K-T diagram based on EI-Haddad model of SLM AlSi10Mg alloys

    图  9   基于机器学习的增材制造金属材料力学性能评价流程[108-113]

    Figure  9.   Evaluation process of mechanical performance of AM metal materials based on machine learning

    图  10   增材制造专用铝合金粉末的添加物分类[121-128]

    Figure  10.   Classification of additives for the SLM AlSi10Mg alloy powder

    表  1   选区激光熔化成形过程的主要技术参数[35]

    Table  1   Technological parameters of SLM process

    粉末参数 激光参数 扫描参数 环境参数
    颗粒形状、颗粒尺寸和分布、化学成分、热导率、熔点、吸收率/反射率、堆积层厚度、粉末预热温度 激光功率、激光束直径、激光种类、激光入射角度、光斑大小、激光点距、脉冲持续时间、脉冲频率 扫描间距、
    扫描速度、
    扫描策略
    保护气体、惰性气体流速、基板预热温度
    下载: 导出CSV
  • [1] 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690 − 2698.

    Wang Huaming. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690 − 2698.

    [2] 龚淼, 戴士杰, 王志平, 等. 航空压气机叶片增材修复最优热输入分析[J]. 焊接学报, 2020, 41(8): 39 − 47,99. doi: 10.12073/j.hjxb.20200602001

    Gong Miao, Dai Shijie, Wang Zhiping, et al. Research on optimal heat input for blade repair of aero compressor[J]. Transactions of the China Welding Institution, 2020, 41(8): 39 − 47,99. doi: 10.12073/j.hjxb.20200602001

    [3] 林鑫, 黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学:信息科学, 2015, 45(9): 1111 − 1126. doi: 10.1360/N112014-00245

    Lin Xin, Huang Weidong. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica (Informationis), 2015, 45(9): 1111 − 1126. doi: 10.1360/N112014-00245

    [4] 张文奇, 朱海红, 胡志恒, 等. AlSi10Mg的激光选区熔化成形研究[J]. 金属学报, 2017, 53(8): 918 − 926. doi: 10.11900/0412.1961.2016.00472

    Zhang Wenqi, Zhu Haihong, Hu Zhiheng, et al. Study on the selective laser melting of AlSi10Mg[J]. Acta Metallurgica Sinica, 2017, 53(8): 918 − 926. doi: 10.11900/0412.1961.2016.00472

    [5] 张新明, 刘胜胆. 航空铝合金及其材料加工[J]. 中国材料进展, 2013, 32(1): 39 − 55. doi: 10.7502/j.issn.1674-3962.2013.01.04

    Zhang Xinming, Liu Shengdan. Aerocraft aluminum alloys and their materials processing[J]. Materials China, 2013, 32(1): 39 − 55. doi: 10.7502/j.issn.1674-3962.2013.01.04

    [6] 陈国庆, 树西, 张秉刚, 等. 国内外电子束熔丝沉积增材制造技术发展现状[J]. 焊接学报, 2018, 39(8): 123 − 128,134. doi: 10.12073/j.hjxb.2018390214

    Chen Guoqing, Shu Xi, Zhang Binggang, et al. State-of-arts of electron beam freeform fabrication technology[J]. Transactions of the China Welding Institution, 2018, 39(8): 123 − 128,134. doi: 10.12073/j.hjxb.2018390214

    [7] 洪恩航, 刘美红, 黎振华. 基于开源切片路径规划的机器人电弧增材制造系统[J]. 焊接学报, 2021, 42(11): 65 − 69. doi: 10.12073/j.hjxb.20210312004

    Hong Enhang, Liu Meihong, Li Zhenhua. Development of wire arc additive manufacturing robotic system based on open source slicing software for path planning[J]. Transactions of the China Welding Institution, 2021, 42(11): 65 − 69. doi: 10.12073/j.hjxb.20210312004

    [8] 张兆栋, 曾庆文, 刘黎明, 等. 铝合金激光诱导MIG电弧增材制造成形尺寸规律[J]. 焊接学报, 2019, 40(8): 7 − 12.

    Zhang Zhaodong, Zeng Qingwen, Liu Liming, et al. Forming regularity of aluminum alloy formed by laser induced MIG arc additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(8): 7 − 12.

    [9] 樊丁, 李楠, 黄健康, 等. 旁路耦合微束等离子弧增材制造自适应高度控制系统[J]. 焊接学报, 2019, 40(11): 1 − 7. doi: 10.12073/j.hjxb.2019400279

    Fan Ding, Li Nan, Huang Jiankang, et al. Double electrode micro plasma arc additive manufacturing control system based on adaptive height adjustment[J]. Transactions of the China Welding Institution, 2019, 40(11): 1 − 7. doi: 10.12073/j.hjxb.2019400279

    [10]

    Uzan N E, Shneck R, Yeheskel O, et al. Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM)[J]. Materials Science & Engineering:A, 2017, 704: 229 − 237.

    [11]

    Thijs L, Kempen K, Kruth J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 2013, 61(5): 1809 − 1819. doi: 10.1016/j.actamat.2012.11.052

    [12]

    Tang M, Pistorius P C. Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting[J]. International Journal of Fatigue, 2017, 94: 192 − 201. doi: 10.1016/j.ijfatigue.2016.06.002

    [13]

    Kempen K, Thijs L, Humbeeck J V. Processing AlSi10Mg by selective laser melting: Parameter optimisation and material characterisation[J]. Materials Science & Technology, 2015, 31(8): 917 − 923.

    [14]

    Leary M, Mazur M, Elambasseril J, et al. Selective laser melting (SLM) of AlSi12Mg lattice structures[J]. Materials & Design, 2016, 98: 344 − 357.

    [15]

    Kaufmann N, Imran M, Wischeropp T M, et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM)[J]. Physics Procedia, 2016, 83: 918 − 926. doi: 10.1016/j.phpro.2016.08.096

    [16]

    Read N, Wang W, Essa K, et al. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development[J]. Materials & Design, 2015, 65: 417 − 424.

    [17]

    Rakesh C S, Priyanka N, Jayaganthan R, et al. Effect of build atmosphere on the mechanical properties of AlSi10Mg produced by selective laser melting[J]. Materials Today: Proceedings, 2018, 5(9): 17231 − 17238. doi: 10.1016/j.matpr.2018.04.133

    [18]

    Zaretsky E, Stern A, Frage N, et al. Dynamic response of AlSi10Mg alloy fabricated by selective laser melting[J]. Materials Science & Engineering: A, 2017, 688: 364 − 370.

    [19]

    Jawade S A, Joshi R S, Desai S B. Comparative study of mechanical properties of additively manufactured aluminum alloy[J]. Materials Today: Proceedings, 2021, 46(19): 9270 − 9274.

    [20] 吴正凯. 基于缺陷三维成像的增材铝合金各向异性疲劳性能评价[D]. 成都: 西南交通大学, 2020.

    Wu Zhengkai. Evaluation of anisotropic fatigue performance of additively manufactured aluminium alloy based on 3D X-ray computed tomography of defects [D]. Chengdu: Southwest Jiaotong University, 2020.

    [21] 余开斌, 刘允中, 杨长毅. 热处理对选区激光熔化成形AlSi10Mg合金显微组织及力学性能的影响[J]. 粉末冶金材料科学与工程, 2018, 23(3): 298 − 305. doi: 10.3969/j.issn.1673-0224.2018.03.010

    Yu Kaibin, Liu Yunzhong, Yang Changyi. Effects of heat treatment on microstructures and mechanical properties of AlSi10Mg alloy produced by selective laser melting[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(3): 298 − 305. doi: 10.3969/j.issn.1673-0224.2018.03.010

    [22] 董鹏, 李忠华, 严振宇, 等. 铝合金激光选区熔化成形技术研究现状[J]. 应用激光, 2015, 35(5): 607 − 611. doi: 10.14128/j.cnki.al.20153505.607

    Dong Peng, Li Zhonghua, Yan Zhenyu, et al. Research status of selective laser melting of aluminum alloys[J]. Applied Laser, 2015, 35(5): 607 − 611. doi: 10.14128/j.cnki.al.20153505.607

    [23] 廉艳平, 王潘丁, 高杰, 等. 金属增材制造若干关键力学问题研究进展[J]. 力学进展, 2021, 51(3): 648 − 701. doi: 10.6052/1000-0992-21-037

    Lian Yanping, Wang Panding, Gao Jie, et al. Fundamental mechanics problems in metal additive manufacturing: A state-of-art review[J]. Advances in Mechanics, 2021, 51(3): 648 − 701. doi: 10.6052/1000-0992-21-037

    [24]

    Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends[J]. Journal of Materials Science & Technology, 2019, 35(2): 270 − 284.

    [25] 宋哲. 选区激光熔化钛合金的缺陷容限评价方法[D]. 成都: 西南交通大学, 2019.

    Song Zhe. Evaluation method of defect tolerance of selective laser melting titanium alloy[D]. Chengdu: Southwest Jiaotong University, 2019.

    [26] 王凯, 焦向东, 朱加雷, 等. 激光功率密度对SLM成形TC4磨损性能的影响[J]. 焊接学报, 2020, 41(5): 61 − 64. doi: 10.12073/j.hjxb.20190926001

    Wang Kai, Jiao Xiangdong, Zhu Jialei, et al. Effect of laser power density on wear resistance of TC4 alloy manufactured by SLM[J]. Transactions of the China Welding Institution, 2020, 41(5): 61 − 64. doi: 10.12073/j.hjxb.20190926001

    [27]

    Chen J, Hou W, Wang X Z, et al. Microstructure, porosity and mechanical properties of selective laser melted AlSi10Mg[J]. Chinese Journal of Aeronautics, 2020, 33(7): 2043 − 2054. doi: 10.1016/j.cja.2019.08.017

    [28]

    Aboulkhair N T, Everitt N M, Ashcroft I, et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting[J]. Additive Manufacturing, 2014, 1: 77 − 86.

    [29]

    Wu H H, Li J F, Wei Z Y, et al. Effect of processing parameters on forming defects during selective laser melting of AlSi10Mg powder[J]. Rapid Prototyping Journal, 2020, 26(5): 871 − 879. doi: 10.1108/RPJ-07-2018-0184

    [30]

    Fiegl T, Franke M, Koerner C, et al. Impact of build envelope on the properties of additive manufactured parts from AlSi10Mg[J]. Optics & Laser Technology, 2019, 111: 51 − 57.

    [31]

    Jiang X H, Ye T, Zhu Y H. Effect of process parameters on residual stress in selective laser melting of AlSi10Mg[J]. Materials Science & Technology, 2020, 36(3): 342 − 352.

    [32]

    Biffi C A, Fiocchi J, Tuissi A. Selective laser melting of AlSi10 Mg: Influence of process parameters on Mg2Si precipitation and Si spheroidization[J]. Journal of Alloys & Compounds, 2018, 755: 100 − 107.

    [33] 蔡笑宇, 董博伦, 殷宪铼, 等. 预热温度对GTA增材制造钛铝合金组织及性能的影响[J]. 焊接学报, 2021, 42(10): 14 − 21.

    Cai Xiaoyu, Dong Bolun, Yin Xianlai, et al. Influences of preheating temperatures on the microstructures and mechanical properties of GTA additive manufactured TiAl based alloy[J]. Transactions of the China Welding Institution, 2021, 42(10): 14 − 21.

    [34]

    Brandl E, Heckenberger U, Holzinger V, et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior[J]. Materials & Design, 2012, 34: 159 − 169.

    [35]

    Trevisan F, Calignano F, Lorusso M. On the selective laser melting (SLM) of the AlSi10Mg alloy: Process, microstructure, and mechanical properties[J]. Materials, 2017, 10(1): 76. doi: 10.3390/ma10010076

    [36]

    Jian Z M, Qian G A, Paolino D S, et al. Crack initiation behavior and fatigue performance up to very-high-cycle regime of AlSi10Mg fabricated by selective laser melting with two powder sizes[J]. International Journal of Fatigue, 2021, 143: 106013. doi: 10.1016/j.ijfatigue.2020.106013

    [37]

    Biffi C A, Fiocchi J, Bassani P, et al. Continuous wave vs pulsed wave laser emission in selective laser melting of AlSi10Mg parts with industrial optimized process parameters: Microstructure and mechanical behaviour[J]. Additive Manufacturing, 2018, 24: 639 − 646. doi: 10.1016/j.addma.2018.10.021

    [38]

    Ahmad B A, Pham Q C. Selective laser melting of AlSi10Mg: Effects of scan direction, part placement and inert gas flow velocity on tensile strength[J]. Journal of Materials Processing & Technology, 2017, 240: 388 − 396.

    [39] 杨义成, 黄瑞生, 孙谦, 等. 激光送粉增材制造光粉交互作用机制分析[J]. 焊接学报, 2019, 40(11): 68 − 74. doi: 10.12073/j.hjxb.2019400290

    Yang Yicheng, Huang Ruisheng, Sun Qian, et al. Mechanism analysis of interaction between laser and particles in laser additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(11): 68 − 74. doi: 10.12073/j.hjxb.2019400290

    [40]

    Hitzler L, Janousch C, Schanz J, et al. Direction and location dependency of selective laser melted AlSi10Mg specimens[J]. Journal of Materials Processing Technology, 2017, 243: 48 − 61. doi: 10.1016/j.jmatprotec.2016.11.029

    [41]

    Maconachie T, Leary M, Zhang J J, et al. Effect of build orientation on the quasi-static and dynamic response of SLM AlSi10Mg[J]. Materials Science & Engineering: A, 2020, 788: 139445.

    [42]

    Kempen K, Thijs L, Humbeeck J V, et al. Mechanical properties of AlSi10Mg produced by selective laser melting[J]. Physics Procedia, 2012, 39: 439 − 446. doi: 10.1016/j.phpro.2012.10.059

    [43]

    Rosenthal I, Stern A, Frage N, et al. Microstructure and mechanical properties of AlSi10Mg parts produced by the laser beam additive manufacturing (AM) technology[J]. Metallography, Microstructure, and Analysis, 2014, 3(6): 448 − 453.

    [44]

    Hitzler L, Schoch N, Heine B, et al. Compressive behaviour of additively manufactured AlSi10Mg[J]. Materialwissenschaft und Werkstofftechnik, 2018, 49(5): 683 − 688. doi: 10.1002/mawe.201700239

    [45]

    Hitzler L, Hirsch J, Schanz J, et al. Fracture toughness of selective laser melted AlSi10Mg[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233(4): 615 − 621.

    [46]

    Bar N, Moshe N, Adin S, et al. Study on the dynamic properties of AM-SLM AlSi10Mg alloy using the Split Hopkinson Pressure Bar (SHPB) technique[J]. EPJ Web of Conferences, 2018, 183: 04005. doi: 10.1051/epjconf/201818304005

    [47]

    Xu Z W, Liu A, Wang X S, et al. Fatigue performance and crack propagation behavior of selective laser melted AlSi10Mg in 0°, 15°, 45° and 90° building directions[J]. Materials Science & Engineering: A, 2021, 812: 141141.

    [48]

    Wu Z K, Wu S C, Bao J G, et al. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion[J]. International Journal of Fatigue, 2021, 151: 106317. doi: 10.1016/j.ijfatigue.2021.106317

    [49]

    Beretta S, Gargourimotlagh M, Foletti S, et al. Fatigue strength assessment of "as built" AlSi10Mg manufactured by SLM with different build orientations[J]. International Journal of Fatigue, 2020, 139: 105737. doi: 10.1016/j.ijfatigue.2020.105737

    [50]

    Nezhadfar P D, Thompson S, Saharan A, et al. Structural integrity of additively manufactured aluminum alloys: Effects of build orientation on microstructure, porosity, and fatigue behavior[J]. Additive Manufacturing, 2021, 47: 102292. doi: 10.1016/j.addma.2021.102292

    [51]

    Li W, Li S, Liu J, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism[J]. Materials Science & Engineering: A, 2016, 663: 116 − 125.

    [52]

    Wang L F, Sun J, Zhu X G, et al. Effects of T2 heat treatment on microstructure and properties of the selective laser melted aluminum alloy samples[J]. Materials, 2018, 11(1): 66. doi: 10.3390/ma11010066

    [53]

    Casati R, Hamidi N M, Coduri M, et al. Effects of platform pre-heating and thermal-treatment strategies on properties of AlSi10Mg alloy processed by selective laser melting[J]. Metals, 2018, 8(11): 954. doi: 10.3390/met8110954

    [54]

    Rosenthal I, Nahmany M, Stern A, et al. Structure and mechanical properties of AlSi10Mg fabricated by selective laser melting additive manufacturing (SLM-AM)[J]. Advanced Materials Research, 2015, 1111: 62 − 66. doi: 10.4028/www.scientific.net/AMR.1111.62

    [55]

    Aboulkhair N T, Maskery I, Tuck C, et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment[J]. Materials Science & Engineering: A, 2016, 667: 139 − 146.

    [56]

    Tridello A, Fiocchi J, Biffi C A, et al. Influence of the annealing and defects on the VHCF behavior of an SLM AlSi10Mg alloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(12): 2794 − 2807.

    [57]

    Larrosa N O, Wang W, Read N, et al. Linking microstructure and processing defects to mechanical properties of selectively laser melted AlSi10Mg alloy[J]. Theoretical & Applied Fracture Mechanics, 2018, 98: 123 − 133.

    [58]

    Finfrock C B, Exil A, Carroll J D, et al. Effect of hot isostatic pressing and powder feedstock on porosity, microstructure, and mechanical properties of selective laser melted AlSi10Mg[J]. Metallography, Microstructure, and Analysis, 2018, 7(4): 443 − 456.

    [59]

    Zhang C C, Zhu H H, Liao H L, et al. Effect of heat treatments on fatigue property of selective laser melting AlSi10Mg[J]. International Journal of Fatigue, 2018, 116: 513 − 522. doi: 10.1016/j.ijfatigue.2018.07.016

    [60]

    Han Q Q, Jiao Y. Effect of heat treatment and laser surface remelting on AlSi10Mg alloy fabricated by selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2019, 102(9-12): 3315 − 3324. doi: 10.1007/s00170-018-03272-y

    [61] 张弛, 沈忱, 李芳, 等. 铝合金熔丝增材制造表面平整度研究[J]. 电焊机, 2020, 50(2): 53 − 57. doi: 10.7512/j.issn.1001-2303.2020.02.11

    Zhang Chi, Shen Chen, Li Fang, et al. Study on surface flatness of aluminum alloy by wire arc additive manufacturing(WAAM)[J]. Electric Welding Machine, 2020, 50(2): 53 − 57. doi: 10.7512/j.issn.1001-2303.2020.02.11

    [62] 唐琪, 陈静青, 陈鹏, 等. 基于有限元的激光增材过程熔化热积累模拟[J]. 焊接学报, 2019, 40(7): 100 − 104. doi: 10.12073/j.hjxb.2019400189

    Tang Qi, Chen Jingqing, Chen Peng, et al. Finite element simulation of melting heat accumulation in laser additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(7): 100 − 104. doi: 10.12073/j.hjxb.2019400189

    [63]

    Li Z H, Li B Q, Bai P K, et al. Research on the thermal behaviour of a selectively laser melted aluminium alloy: Simulation and experiment[J]. Materials, 2018, 11(7): 1172. doi: 10.3390/ma11071172

    [64]

    Ding X P, Wang L Z. Heat transfer and fluid flow of molten pool during selective laser melting of AlSi10Mg powder: Simulation and experiment[J]. Journal of Manufacturing Processes, 2017, 26: 280 − 289. doi: 10.1016/j.jmapro.2017.02.009

    [65]

    Li Y L, Gu D D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Materials & Design, 2014, 63: 856 − 867.

    [66]

    Liu S W, Zhu H H, Peng G Y, et al. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis[J]. Materials & Design, 2018, 142: 319 − 328.

    [67]

    Hu H W, Ding X P, Wang L Z. Numerical analysis of heat transfer during multi-layer selective laser melting of AlSi10Mg[J]. Optik - International Journal for Light & Electron Optics, 2016, 127(20): 8883 − 8891.

    [68]

    Nadot Y, Nadot-Martin C, Kan W H, et al. Predicting the fatigue life of an AlSi10Mg alloy manufactured via laser powder bed fusion by using data from computed tomography[J]. Additive Manufacturing, 2020, 32: 100899. doi: 10.1016/j.addma.2019.100899

    [69]

    Wang P D, Lei H S, Zhu X L, et al. Influence of manufacturing geometric defects on the mechanical properties of AlSi10Mg alloy fabricated by selective laser melting[J]. Journal of Alloys & Compounds, 2019, 789: 852 − 859.

    [70]

    Wang P D, Zhou H, Zhang L M, et al. In situ X-ray micro-computed tomography study of the damage evolution of prefabricated through-holes in SLM-Printed AlSi10Mg alloy under tension[J]. Journal of Alloys & Compounds, 2020, 821: 153576.

    [71]

    Amani Y, Dancette S, Delroisse P, et al. Compression behavior of lattice structures produced by selective laser melting: X-ray tomography based experimental and finite element up approaches[J]. Acta Materialia, 2018, 159: 395 − 407. doi: 10.1016/j.actamat.2018.08.030

    [72]

    Li Z H, Nie Y F, Liu B, et al. Mechanical properties of AlSi10Mg lattice structures fabricated by selective laser melting[J]. Materials & Design, 2020, 192: 108709.

    [73]

    Zhang W J, Hu Y Y, Ma X F, et al. Very-high-cycle fatigue behavior of AlSi10Mg manufactured by selected laser melting: Crystal plasticity modeling[J]. International Journal of Fatigue, 2021, 145: 106109. doi: 10.1016/j.ijfatigue.2020.106109

    [74]

    Subbiah R, Bensingh J, Kader A, et al. Influence of printing parameters on structures, mechanical properties and surface characterization of aluminium alloy manufactured using selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2020, 106(11-12): 5137 − 5147. doi: 10.1007/s00170-020-04929-3

    [75]

    Beretta S, Romano S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes[J]. International Journal of Fatigue, 2017, 94: 178 − 191. doi: 10.1016/j.ijfatigue.2016.06.020

    [76]

    Daniewicz S R, Shamsaei N. An introduction to the fatigue and fracture behavior of additive manufactured parts[J]. International Journal of Fatigue, 2017, 94: 167. doi: 10.1016/j.ijfatigue.2016.07.007

    [77]

    Leuders S, Thone M, Riemer A, et al. On the mechanical behavior of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance[J]. International Journal of Fatigue, 2018, 48: 300 − 307.

    [78] 虞雨洭, 吴正凯, 吴圣川. 高分辨三维成像原位试验机研制进展及应用[J]. 中国材料进展, 2021, 40(2): 90 − 104. doi: 10.7502/j.issn.1674-3962.202007031

    Yu Yukuang, Wu Zhengkai, Wu Shengchuan. Development and application of in-situ testing machines based on high resolution three-dimensional tomography[J]. Materials China, 2021, 40(2): 90 − 104. doi: 10.7502/j.issn.1674-3962.202007031

    [79]

    Xie C, Wu S C, Yu Y K, et al. Defect-correlated fatigue resistance of additively manufactured Al-Mg4.5Mn alloy with in situ micro-rolling[J]. Journal of Materials Processing Technology, 2021, 291: 117039. doi: 10.1016/j.jmatprotec.2020.117039

    [80] 吴圣川, 吴正凯, 谢成, 等. 基于X射线成像的大载荷高频率原位拉伸和疲劳试验机: CN201910210664.3[P]. 2019 − 03 − 20.

    Wu Shengchuan, Wu Zhengkai, Xie Zheng, et al. Large load high frequency in situ tensile and fatigue testing machine based on X-ray imaging: CN201910210664.3[P]. 2019 − 03 − 20.

    [81] 吴圣川, 吴正凯, 康国政, 等. 先进材料多维多尺度高通量表征研究进展[J]. 机械工程学报, 2021, 57(16): 37 − 65. doi: 10.3901/JME.2021.16.037

    Wu Shengchuan, Wu Zhengkai, Kang Guozheng, et al. Research progress on multi-dimensional and multi-scale high-throughput characterization for advanced materials[J]. Journal of Mechanical Engineering, 2021, 57(16): 37 − 65. doi: 10.3901/JME.2021.16.037

    [82]

    Bao J G, Wu S C, Withers P J, et al. Defect evolution during high temperature tension-tension fatigue of SLM AISi10Mg alloy by synchrotron tomography[J]. Materials Science & Engineering: A, 2020, 792: 139809.

    [83]

    Bao J G, Wu Z K, Wu S C, et al. Hot dwell-fatigue behaviour of additively manufactured AlSi10Mg alloy: Relaxation, cyclic softening and fracture mechanisms[J]. International Journal of Fatigue, 2021, 151: 106408. doi: 10.1016/j.ijfatigue.2021.106408

    [84]

    Haboub A, Bale H A, Nasiatka J R, et al. Tensile testing of materials at high temperatures above 1700 ℃ with in situ synchrotron X-ray micro-tomography[J]. The Review of Scientific Instruments, 2014, 85(8): 083702. doi: 10.1063/1.4892437

    [85]

    Sloof W G, Pei R Z, Mcdonald S A, et al. Repeated crack healing in MAX-phase ceramics revealed by 4D in situ synchrotron X-ray tomographic microscopy[J]. Scientific Reports, 2016, 6(1): 23040. doi: 10.1038/srep23040

    [86]

    Puncreobutr C, Lee P D, Hamilton R W, et al. Synchrotron tomographic characterization of damage evolution during aluminum alloy solidification[J]. Metallurgical and Materials Transactions A, 2013, 44(12): 5389 − 5395. doi: 10.1007/s11661-012-1563-0

    [87]

    Terzi S, Salvo L, Suery M, et al. In situ X-ray tomography observation of inhomogeneous deformation in semi-solid aluminium alloys[J]. Scripta Materialia, 2009, 61(5): 449 − 452. doi: 10.1016/j.scriptamat.2009.04.041

    [88]

    Suery M, Terzi S, Mireux B, et al. Fast in situ X-ray microtomography observations of solidification and semisolid deformation of Al-Cu alloys[J]. Journal of Materials Science, 2012, 64(1): 83 − 88. doi: 10.1007/s11837-011-0219-7

    [89]

    Wang Z Y, Wu S C, Kang G Z, et al. In-situ synchrotron X-ray tomography investigation of damage mechanism of an extruded magnesium alloy in uniaxial low-cycle fatigue with ratchetting[J]. Acta Materialia, 2021, 211: 116881. doi: 10.1016/j.actamat.2021.116881

    [90]

    Wu S C, Song Z, Kang G Z, et al. The Kitagawa-Takahashi fatigue diagram to hybrid welded AA7050 joints via synchrotron X-ray tomography[J]. International Journal of Fatigue, 2019, 125: 210 − 221. doi: 10.1016/j.ijfatigue.2019.04.002

    [91]

    Messager A, Junet A, Palin-Luc T, et al. In situ synchrotron ultrasonic fatigue testing device for 3D characterisation of internal crack initiation and growth[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(3): 558 − 567.

    [92]

    Wu S C, Xiao T Q, Withers P J. The imaging of failure in structural materials by synchrotron radiation X-ray microtomography[J]. Engineering Fracture Mechanics, 2017, 182: 127 − 156. doi: 10.1016/j.engfracmech.2017.07.027

    [93]

    Wu S C, Yu C, Yu P S, et al. Corner fatigue cracking behavior of hybrid laser AA7020 welds by synchrotron X-ray computed microtomography[J]. Materials Science & Engineering: A, 2016, 651: 604 − 614.

    [94]

    Teranishi M, Kuwazuru O, Gennai S, et al. Three-dimensional stress and strain around real shape Si particles in cast aluminum alloy under cyclic loading[J]. Materials Science & Engineering: A, 2016, 678: 273 − 285.

    [95]

    Qu P, Toda H, Zhang H, et al. Local crack driving force analysis of a fatigue crack by a microstructural tracking method[J]. Scripta Materialia, 2009, 61(5): 489 − 492. doi: 10.1016/j.scriptamat.2009.05.004

    [96]

    Hu Y N, Ao N, Wu S C, et al. Influence of in situ micro-rolling on the improved strength and ductility of hybrid additively manufactured metals[J]. Engineering Fracture Mechanics, 2021, 253: 107868. doi: 10.1016/j.engfracmech.2021.107868

    [97]

    Zhang B, Huang H M, Wu S C, et al. In-situ X-ray tomography on permeability evolution of C/SiC porous ceramic for hypersonic vehicles[J]. Ceramics International, 2021, 47(19): 27770 − 27777. doi: 10.1016/j.ceramint.2021.06.204

    [98] 吴圣川, 吴正凯, 鲍泓翊玺, 等. 基于先进光源原位成像的超高周疲劳损伤试验系统: CN201910523647.5[P]. 2019 − 06 − 17.

    Wu Shengchuan, Wu Zhengkai, Bao Hongyixi, et al. Ultra-high cycle fatigue damage test system based on advanced light source in situ imaging: CN201910523647.5 [P]. 2019 − 06 − 17.

    [99] 吴圣川, 谢成, 吴正凯, 等. 一种采用X射线三维成像的悬臂式旋转弯曲原位疲劳试验机: CN201810852157.5[P]. 2018 − 07 − 30.

    Wu Shengchuan, Xie Cheng, Wu Zhengkai, et al. A cantilever rotating bending in situ fatigue testing machine using X-ray 3D imaging: CN201810852157.5 [P]. 2018 − 07 − 30.

    [100]

    Kan W H, Chiu L N S, Lim C V S, et al. A critical review on the effects of process-induced porosity on the mechanical properties of alloys fabricated by laser powder bed fusion[J]. Journal of Materials Science, 2022, 57: 9818 − 9865. doi: 10.1007/s10853-022-06990-7

    [101]

    Murakami Y, Takagi T, Wada K, et al. Essential structure of S-N curve: Prediction of fatigue life and fatigue limit of defective materials and nature of scatter[J]. International Journal of Fatigue, 2021, 146: 106138. doi: 10.1016/j.ijfatigue.2020.106138

    [102]

    Qian G A, Jian Z M, Qian Y J, et al. Very-high-cycle fatigue behavior of AlSi10Mg manufactured by selective laser melting: Effect of build orientation and mean stress[J]. International Journal of Fatigue, 2020, 138: 105696. doi: 10.1016/j.ijfatigue.2020.105696

    [103]

    Laursen C M, Dejong S A, Dickens S M, et al. Relationship between ductility and the porosity of additively manufactured AlSi10Mg[J]. Materials Science & Engineering: A, 2020, 795: 139922.

    [104]

    Ngnekou J N D, Nadot Y, Henaff G, et al. Fatigue properties of AlSi10Mg produced by additive layer manufacturing[J]. International Journal of Fatigue, 2019, 119: 160 − 172. doi: 10.1016/j.ijfatigue.2018.09.029

    [105]

    Romano S, Brueckner-Foit A, Brandao A, et al. Fatigue properties of AlSi10Mg obtained by additive manufacturing: Defect-based modelling and prediction of fatigue strength[J]. Engineering Fracture Mechanics, 2018, 187: 165 − 189. doi: 10.1016/j.engfracmech.2017.11.002

    [106]

    Wu S C, Liu Y X, Kang G Z, et al. On the fatigue performance and residual life of intercity railway axles with inside axle boxes[J]. Engineering Fracture Mechanics, 2018, 197: 176 − 191. doi: 10.1016/j.engfracmech.2018.04.046

    [107]

    Liu R Q, Kumar A, Chen Z Z, et al. A predictive machine learning approach for microstructure optimization and materials design[J]. Scientific Reports, 2015, 5(1): 11551. doi: 10.1038/srep11551

    [108]

    Zhang X C, Gong J G, Xuan F Z. A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions[J]. International Journal of Fatigue, 2021, 148: 106236. doi: 10.1016/j.ijfatigue.2021.106236

    [109]

    Han Y L, Liu X, Dai S H. Fatigue life calculation of flawed structures - based on artificial neural network with special learning set[J]. International Journal of Pressure Vessels & Piping, 1998, 75(3): 263 − 269.

    [110]

    He L, Wang Z L, Akebono H, et al. Machine learning-based predictions of fatigue life and fatigue limit for steels[J]. Journal of Materials Science & Technology, 2021, 90: 9 − 19.

    [111]

    Zhang M, Sun C N, Zhang X, et al. High cycle fatigue life prediction of laser additive manufactured stainless steel: A machine learning approach[J]. International Journal of Fatigue, 2019, 128: 105194. doi: 10.1016/j.ijfatigue.2019.105194

    [112]

    Luo Y W, Zhang B, Feng X, et al. Pore-affected fatigue life scattering and prediction of additively manufactured Inconel 718: An investigation based on miniature specimen testing and machine learning approach[J]. Materials Science & Engineering: A, 2021, 802: 140693.

    [113]

    Bao H Y X, Wu S C, Wu Z K, et al. A machine-learning fatigue life prediction approach of additively manufactured metals[J]. Engineering Fracture Mechanics, 2021, 242: 107508. doi: 10.1016/j.engfracmech.2020.107508

    [114]

    Zhu C P, Li C, Wu D, et al. A titanium alloys design method based on high-throughput experiments and machine learning[J]. Journal of Materials Research & Technology, 2021, 11: 2336 − 2353.

    [115]

    Ivanna B, Oleksandr S, Kristian M. Optimization of process parameters for powder bed fusion additive manufacturing by combination of machine learning and finite element method: A conceptual framework[J]. Procedia CIRP, 2018, 67: 227 − 232. doi: 10.1016/j.procir.2017.12.204

    [116]

    Long X Y, Zhao S K, Jiang C, et al. Deep learning-based planar crack damage evaluation using convolutional neural networks[J]. Engineering Fracture Mechanics, 2021, 246: 107604. doi: 10.1016/j.engfracmech.2021.107604

    [117]

    Andrea R, Michael D S, Henry P, et al. Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials[J]. Npj Computational Materials, 2018, 4(1): 963 − 977.

    [118]

    Kusoglu I M, Bilal G, Stephan B. Research trends in laser powder bed fusion of Al alloys within the last decade[J]. Additive Manufacturing, 2020, 36: 101489. doi: 10.1016/j.addma.2020.101489

    [119]

    Li P Y, Zheng W D, Tang P J. Recent developments in aluminum alloy powders for selective laser melting[C]//2018 World Congress on Powder Metallurgy. Beijing, China, 2018: 1004 − 1014.

    [120] 黄建国, 任淑彬. 选区激光熔化成型铝合金的研究现状及展望[J]. 材料导报, 2021, 35(23): 23142 − 23152. doi: 10.11896/cldb.20060035

    Huang Jianguo, Ren Shubin. Research status and prospect of aluminum alloy manufactured by selective laser melting[J]. Materials Reports, 2021, 35(23): 23142 − 23152. doi: 10.11896/cldb.20060035

    [121] 梁立业, 曾献杰, 薛博宇. 稀土铒元素增强SLM专用AlSi10Mg铝合金粉末及其应用: CN201810421660.5[P]. 2018 − 05 − 04.

    Liang Liye, Zeng Xianjie, Xue Boyu, et al. AlSi10Mg aluminum alloy powder for SLM reinforced by erbium element and its application: CN201810421660.5 [P]. 2018 − 05 − 04.

    [122] 崔丽, 杨天野, 聂祚仁, 等. 一种AlSi10Mg粉末及激光选区熔化制造工艺: CN202011623507.4[P]. 2020 − 02 − 31.

    Cui Li, Yang Tianye, Nie Zuoren, et al. A manufacturing process of AlSi10Mg powder and selective laser melting: CN202011623507.4 [P]. 2020 − 02 − 31.

    [123] 陆皓, 李相洋, 余志远, 等. 一种激光选区熔化铝合金及增材制造方法: CN202011551875.2[P]. 2020 − 12 − 24.

    Lu Hao, Li Xiangyang, Yu Zhiyuan, et al. A selective laser melting aluminum alloy and additive manufacturing method: CN202011551875.2 [P]. 2020 − 12 − 24.

    [124] 夏玉峰, 张雪, 廖海龙, 等. 电弧熔丝增材制造钛/铝复合材料的组织与性能[J]. 焊接学报, 2021, 42(8): 18 − 24. doi: 10.12073/j.hjxb.20210422001

    Xia Yufeng, Zhang Xue, Liao Hailong, et al. Microstructure and properties of Ti/Al composites materials fabricated by wire and arc additive manufacturing[J]. Transactions of the China Welding Institution, 2021, 42(8): 18 − 24. doi: 10.12073/j.hjxb.20210422001

    [125]

    Della G R, Del S I, Caraviello A, et al. Selective laser melting of an Al-Si-Mg-Cu alloy: Feasibility and processing aspects[J]. Materials & Manufacturing Processes, 2021, 36(12): 1438 − 1449.

    [126]

    Aversa A, Lorusso M, Cattano G, et al. A study of the microstructure and the mechanical properties of an Al-Si-Ni alloy produced via selective laser melting[J]. Journal of Alloys & Compounds, 2017, 695: 1470 − 1478.

    [127]

    Boillat R, Isanaka S P, Liou F. The effect of nanostructures in aluminum alloys processed using additive manufacturing on microstructural evolution and mechanical performance behavior[J]. Crystals, 2021, 11(5): 524. doi: 10.3390/cryst11050524

    [128]

    Lin T C, Cao C Z, Sokoluk M, et al. Aluminum with dispersed nanoparticles by laser additive manufacturing[J]. Nature Communications, 2019, 10(1): 4124. doi: 10.1038/s41467-019-12047-2

    [129]

    Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672): 365 − 369. doi: 10.1038/nature23894

图(10)  /  表(1)
计量
  • 文章访问数:  711
  • HTML全文浏览量:  129
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-12
  • 网络出版日期:  2022-09-01
  • 刊出日期:  2022-09-29

目录

/

返回文章
返回