Development and engineering application of modal structural stress method for welded structures
-
摘要: 主S-N曲线法作为疲劳计算的新方法在焊接结构疲劳分析中被广泛采用. 为了实现该方法在试验载荷下基于稳态动力学计算结果开展焊接结构疲劳寿命预测,首先引入台架模型作为边界条件,实现将试验载荷作为仿真分析的输入,基于模态叠加法的稳态动力学理论获得较准确的焊缝动态响应. 其次在主S-N曲线法的准静态计算流程基础上,扩展其内涵,提出基于模态结构应力叠加的动态结构应力计算方法,该方法将稳态动力学计算的模态坐标与焊缝的模态结构应力进行叠加,实现动态结构应力计算及动态等效结构应力计算,再采用主S-N曲线进行寿命评估预测. 进一步开发了焊接结构模态结构应力法疲劳评估软件,基于该软件开展了车体疲劳评估和疲劳试验对比. 结果表明,该方法比传统方法更能有效地识别出动态加载下车体的疲劳破坏部位,验证了该方法在试验动态载荷加载下开展焊接结构疲劳评估的有效性和优越性,为研究焊接结构疲劳寿命评估理论和拓展主S-N曲线法提供了技术基础.Abstract: The main S-N curve method is a new method for fatigue calculation, which is widely used in fatigue analysis of welded structures. In order to predict the fatigue life of welded structures under the test load, firstly, the bench model is taken as the boundary condition to make the test load become the input of simulation analysis, and the more accurate dynamic response of weld is obtained through steady-state dynamic calculation. Second, in the master S-N curve method of quasi static calculation process, based on the introduction of dynamic structural stress based on modal structural stress superposition calculation method, the method to obtain the modal coordinates and calculated by the dynamic welding structure modal stress superposition structure, structure dynamic stress and the equivalent stress calculation, the method adopts the Lord S-N curve forecasting life assessment. Finally, the fatigue evaluation software of welded structure modal structure stress method is developed. The software is used to carry out the fatigue evaluation and fatigue test comparison. The results show that: this method can effectively identify the fatigue failure parts of the car body under dynamic loading, which verifies the effectiveness and superiority of this method in fatigue evaluation of welded structures under dynamic loading, and provides a technical basis for the study of fatigue life evaluation of welded structures and the expansion of the main S-N curve method.
-
-
表 1 台架边界下的车体频率及阻尼比
Table 1 Body frequency and damping ratio under the boundary of car body
振型 C70E C80 BHP矿石车 频率 f/Hz 阻尼比 $\xi $ (%)频率 f/Hz 阻尼比 $\xi $ (%)频率 f/Hz 阻尼比 $\xi $ (%)侧滚 3.58 4.7 1.37 0.98 1.25 1.97 扭转 9.03 1.78 3.73 1.52 4.52 1.69 垂向一阶弯曲 9.94 0.94 8.80 0.82 — — 横向一阶弯曲 13.45 3.26 9.24 0.92 — — -
[1] 兆文忠, 魏鸿亮, 方吉, 等. 基于主S-N 曲线法的焊接结构虚拟疲劳试验理论与应用[J]. 焊接学报, 2014, 35(5): 75 − 78. Zhao Wenzhong, Wei Hongliang, Fang Ji, et al. The theory and application of the virtual fatigue test of welded structures based on the master S-N Curve method[J]. Transactions of the China Welding Institution, 2014, 35(5): 75 − 78.
[2] 兆文忠, 李向伟, 董平沙. 焊接结构抗疲劳设计理论与方法[M]. 北京: 机械工业出版社, 2017. Zhao Wenzhong, Li Xiangwei, Dong Pingsha. Theory and method of fatigue resistance design for welded structures[M]. Beijing: China Machine Press, 2017.
[3] 于跃斌, 李向伟, 李强, 等. 含咬边缺陷的组焊牵枕结构疲劳寿命定量评估[J]. 焊接学报, 2017, 38(9): 33 − 37. doi: 10.12073/j.hjxb.20170405004 Yu Yuebin, Li Xiangwei, Li Qiang, et al. Quantitative assessment of fatigue life of welded draft bolster structure with undercut defects[J]. Transactions of the China Welding Institution, 2017, 38(9): 33 − 37. doi: 10.12073/j.hjxb.20170405004
[4] 杨广雪, 刘志明, 李广全, 等. 基于等效结构应力法的焊接构架疲劳损伤评估[J]. 铁道学报, 2020, 42(7): 73 − 79. Yang Guangxue, Liu Zhiming, Li Guangquan, et al. Fatigue damage assessment of welded frame on equivalent structural stress method[J]. Journal of the China railway society, 2020, 42(7): 73 − 79.
[5] 李向伟, 方吉, 李文全, 等. 重载货车车体疲劳台架试验技术研究[J]. 铁道学报, 2021, 43(4): 33 − 41. doi: 10.3969/j.issn.1001-8360.2021.04.005 Li Xiangwei, Fang Ji, Li Wenquan, et al. Research on fatigue bench test technology for heavy haul vehicle body[J]. Journal of the China railway society, 2021, 43(4): 33 − 41. doi: 10.3969/j.issn.1001-8360.2021.04.005
[6] 兆文忠, 李季涛, 方吉, 等. 轨道车辆焊接结构抗疲劳设计过程中的认识误区[J]. 大连交通大学学报, 2016, 37(5): 1 − 7. Zhao Wenzhong, Li Jitao, Fang Ji, et al. Misunderstanding in anti-fatigue design process of railway vehicles welded structure[J]. Journal of Dalian Jiaotong University, 2016, 37(5): 1 − 7.
[7] 张强, 李强. 铁路货车车体加速疲劳试验方法研究[J]. 铁道车辆, 2019, 57(9): 4 − 6 + 51. doi: 10.3969/j.issn.1002-7602.2019.09.004 Zhang Qiang, Li Qiang. Research on the accelerated fatigue test method for railway freight carbodies[J]. Rolling Stock, 2019, 57(9): 4 − 6 + 51. doi: 10.3969/j.issn.1002-7602.2019.09.004
[8] 于跃斌. 铁路货车车体疲劳试验方法及关键技术研究[D]. 北京: 北京交通大学, 2018. Yu Yuebin.Research on fatigue test method and key technology of railway freight car body[D]. Beijing: Beijing Jiaotong University, 2018.
[9] 于跃斌, 赵尚超, 李向伟, 等. 铁路货车车体线路动态响应仿真与验证[J]. 西南交通大学学报, 2019, 54(3): 626 − 632. doi: 10.3969/j.issn.0258-2724.20170412 Yu Yuebin, Zhao Shangchao, Li Xiangwei, et al. Simulation and verification of dynamic response of railway wagon on railway track[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 626 − 632. doi: 10.3969/j.issn.0258-2724.20170412
[10] 徐刚, 周鋐, 陈栋华, 等. 基于虚拟试验台的疲劳寿命预测研究[J]. 同济大学学报(自然科学版), 2009, 37(1): 97 − 100. Xu Gang, Zhou Hong, Chen Donghua, et al. Virtual test rig based study on fatigue life prediction[J]. Journal of Tongji University (Natural Science), 2009, 37(1): 97 − 100.
[11] 方吉. 预测轨道车辆焊接结构振动疲劳寿命的新方法研究与应用[D]. 大连: 大连交通大学, 2016. Fang ji. New method research and application of vibration fatigue life prediction for welded structures in railway vehicle[D]. Dalian: Dalian Jiaotong University, 2016.
[12] 刘宏友, 李向伟, 邓爱建, 等. C70E型通用敞车模态试验研究[J]. 铁道车辆, 2015, 53(12): 32 − 36 + 5. doi: 10.3969/j.issn.1002-7602.2015.12.007 Liu Hongyou, Li Xiangwei, Deng Aijian, et al. The modal test and research on C70E general purpose gondola cars[J]. Rolling Stock, 2015, 53(12): 32 − 36 + 5. doi: 10.3969/j.issn.1002-7602.2015.12.007