高级检索

尖角磁场极性对双钨极氩弧焊电弧形态和焊缝特征的影响

刘润涛, 朱言利, 王泽力, 刘黎明

刘润涛, 朱言利, 王泽力, 刘黎明. 尖角磁场极性对双钨极氩弧焊电弧形态和焊缝特征的影响[J]. 焊接学报, 2023, 44(3): 37-43. DOI: 10.12073/j.hjxb.20220410001
引用本文: 刘润涛, 朱言利, 王泽力, 刘黎明. 尖角磁场极性对双钨极氩弧焊电弧形态和焊缝特征的影响[J]. 焊接学报, 2023, 44(3): 37-43. DOI: 10.12073/j.hjxb.20220410001
LIU Runtao, ZHU Yanli, WANG Zeli, LIU Liming. Influence of cusp magnetic field polarity on arc shape and weld characteristics of twin-electrode TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 37-43. DOI: 10.12073/j.hjxb.20220410001
Citation: LIU Runtao, ZHU Yanli, WANG Zeli, LIU Liming. Influence of cusp magnetic field polarity on arc shape and weld characteristics of twin-electrode TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 37-43. DOI: 10.12073/j.hjxb.20220410001

尖角磁场极性对双钨极氩弧焊电弧形态和焊缝特征的影响

基金项目: 国家自然科学基金资助项目(52175290)
详细信息
    作者简介:

    刘润涛,硕士研究生;主要从事多电极电弧复合焊接工艺研究;Email: lrt22005088@163.com

    通讯作者:

    刘黎明,教授,博士研究生导师;主要从事绿色低能耗焊接制造技术研究及装备开发;Email: liulm@dlut.edu.cn.

  • 中图分类号: TG 444

Influence of cusp magnetic field polarity on arc shape and weld characteristics of twin-electrode TIG welding

  • 摘要: 针对双钨极氩弧焊(T-TIG)存在的电弧压力小、焊缝熔深浅等问题,引入不同极性的外加尖角磁场辅助T-TIG焊方法.分别采用高速摄像机和红外摄像仪研究不同极性的尖角磁场对电弧形态和焊缝特征的影响规律,并构建物理模型以揭示尖角磁场与电弧等离子体间的相互作用机制.结果表明,外加尖角磁场影响着T-TIG电弧形态和焊缝温度场,两种极性的尖角磁场都对其热影响区组织有细化作用.其中,在正极性的尖角磁场作用下,T-TIG电弧形态变化程度更大,焊缝温度场更加集中,焊缝熔深比未加磁场时增加37.1%,同时能量利用效率提高31.6%.
    Abstract: Aiming at the problems of low arc pressure and shallow weld penetration in twin-electrode TIG (T-TIG) welding, a T-TIG welding method assisted by cusp magnetic fields with different polarities is introduced. A high-speed camera and an infrared camera were used to study the influence of cusp magnetic fields of different polarities on arc shape and weld characteristics, and a physical model was constructed to reveal the interaction mechanism between cusp magnetic fields and arc plasma. The results show that the external cusp magnetic field affects the shape of the T-TIG arc and the temperature field of the weld, and the cusp magnetic fields of both polarities can refine the structure of the heat-affected zone. Among them, under the action of a positive cusp magnetic field, the T-TIG arc shape changes more greatly, the weld temperature field is more concentrated, the penetration depth of the weld is increased by 37.1% compared with that without a magnetic field, and the energy utilization efficiency increases by 31.6%.
  • 图  1   焊接系统示意图

    Figure  1.   Schematic diagram of welding system

    图  2   磁发生装置

    Figure  2.   Magnetic generating device

    图  3   不同极性的磁场示意图

    Figure  3.   Schematic diagram of magnetic fields of different polarities. (a) positive cusp magnetic field; (b) negative cusp magnetic field

    图  4   T-TIG电弧形态变化

    Figure  4.   Morphological change of T-TIG arc. (a) arc shape of xOz surface without magnetic field; (b) arc shape of yOz surface without magnetic field; (c) arc shape of xOz surface with positive cusp magnetic field; (d) arc shape of yOz surface with positive cusp magnetic field; (e) arc shape of xOz surface with negative cusp magnetic field; (f) arc shape of yOz surface with negative cusp magnetic field

    图  5   施加尖角磁场前后T-TIG磁场分布示意图

    Figure  5.   Schematic diagram of T-TIG magnetic field distribution before and after applying a cusp magnetic field. (a) before applying cusp magnetic field; (b) after applying cusp magnetic field

    图  6   位置分布示意图

    Figure  6.   Location distribution diagram

    图  7   焊缝不同位置温度曲线

    Figure  7.   Temperature curves of different positions of the weld. (a) temperature curve at position 1; (b) temperature curve at position 2; (c) temperature curve at position 3

    图  8   焊缝横截面对比

    Figure  8.   Weld cross section comparison. (a) no magnetic field applied; (b) apply positive cusp magnetic field; (c) apply negative cusp magnetic field

    图  9   显微组织形貌对比

    Figure  9.   Microstructure and morphology comparison. (a) microstructure of heat affected zone without magnetic field; (b) microstructure of weld zone without magnetic field; (c) microstructure of weld zone with positive cusp magnetic field; (d) microstructure of weld zone positive cusp magnetic field; (e) microstructure of heat affected zone with negative cusp magnetic field; (f) microstructure of weld zone with negative cusp magnetic field

    表  1   母材化学成分(质量分数,%)

    Table  1   Chemical composition of base metal

    CMnSiSPFe
    ≤0.2≤1.7≤0.5≤0.035≤0.035余量
    下载: 导出CSV

    表  2   焊接工艺参数

    Table  2   Welding process parameters

    焊接电流I/A焊接速度v/(mm·min−1)钨极间距D/mm钨极高度h/mm励磁电流Im/A磁感应强度B/mT
    100 + 10030021.57076
    下载: 导出CSV

    表  3   电弧宽度

    Table  3   Arc width mm

    方法xOzyOz
    未加磁场9.978.39
    施加正极性尖角磁场8.2710.13
    施加负极性尖角磁场10.957.15
    下载: 导出CSV

    表  4   能量利用效率相关参数

    Table  4   Parameters related to energy utilization efficiency

    方法焊缝熔深L/mm横截面积S/mm2能量利用效率Em/(kJ·s−1)变化率δ(%)
    未加磁场1.945.110.19
    施加正极性磁场2.666.670.2531.6
    施加负极性磁场1.895.400.205.3
    下载: 导出CSV
  • [1] 吴统立, 王克鸿, 孔见, 等. 不锈钢高频复合双钨极氩弧焊接工艺方法[J]. 焊接学报, 2018, 39(10): 20 − 24 + 129 − 130.

    Wu Tongli, Wang Kehong, Kong Jian, et al. High frequency composite double tungsten argon arc welding process for stainless steel[J]. Transactions of the China Welding Institution, 2018, 39(10): 20 − 24 + 129 − 130.

    [2]

    Yong H, Cao R, Ren Q. The element transfer behavior of gas pool coupled activating TIG welding[J]. China Welding, 2018, 27(4): 1 − 9.

    [3]

    Leng X, Zhang G, Gao H, et al. A study on twin-tungsten TIG welding method[J]. China Welding, 2006, 15(1): 49 − 52.

    [4] 冷雪松. 双钨极氩弧焊耦合电弧物理特性及焊接工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    Leng Xuesong. Research on physical properties and welding process of coupled arc in double tungsten argon arc welding[D]. Harbin: Harbin Institute of Technology, 2008.

    [5] 王树保. 双钨极氩弧焊物理特性及工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2006.

    Wang Shubao. Research on physical properties and process of double tungsten argon arc welding [D]. Harbin: Harbin Institute of Technology, 2006.

    [6] 黄九龄, 孔谅, 王敏, 等. 纯钛TA2薄板双钨极氩弧焊焊接工艺[J]. 焊接学报, 2019, 40(9): 14 − 18 + 161.

    Huang Jiuling, Kong Liang, Wang Min, et al. Pure titanium TA2 thin plate double tungsten electrode argon arc welding process[J]. Transactions of the China Welding Institution, 2019, 40(9): 14 − 18 + 161.

    [7]

    Wu H, Chang Y, Lu L, et al. Review on magnetically controlled arc welding process[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91: 4263 − 4273.

    [8] 刘晓光, 关子奇, 张洪旭, 等. 磁控TIG焊接技术的研究现状及展望[J]. 热加工工艺, 2019, 48(15): 1 − 5. doi: 10.14158/j.cnki.1001-3814.2019.15.001

    Liu Xiaoguang, Guan Ziqi, Zhang Hongxu, et al. Research status and prospect of magnetron TIG welding technology[J]. Hot Working Technology, 2019, 48(15): 1 − 5. doi: 10.14158/j.cnki.1001-3814.2019.15.001

    [9] 龙琼, 钟云波, 余正平, 等. 外加磁场下焊接技术的研究现状[J]. 中国材料进展, 2020, 39(6): 472 − 479.

    Long Qiong, Zhong Yunbo, Yu Zhengping, et al. Research status of welding technology under external magnetic field[J]. Advances in Materials in China, 2020, 39(6): 472 − 479.

    [10]

    Liu Z M, Chen S Y, Yuan X, et al. Magnetic-enhanced keyhole TIG welding process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(1): 275 − 285.

    [11]

    Liu S, Liu Z M, Zhao X C, et al. Influence of cusp magnetic field configuration on K-TIG welding arc penetration behavior[J]. Journal of Manufacturing Processes, 2020, 53: 229 − 237. doi: 10.1016/j.jmapro.2020.02.027

    [12]

    Zhu Y, Xu X, Liu R, et al. Magnetic-enhanced common conductive channel characteristics of two-electrode TIG[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(9): 3217 − 3229.

    [13]

    Liu L, Zhu Y, Liu R. Influence of cusp external magnetic field on deposition rate of two-electrode TIG welding[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(9-10): 6549 − 6558. doi: 10.1007/s00170-022-08706-2

    [14]

    Ueyama T, Ohnawa T, Tanaka M, et al. Occurrence of arc interaction in tandem pulsed gas metal arc welding[J]. Science and Technology of Welding and Joining, 2007, 12(6): 523 − 529. doi: 10.1179/174329307X173715

    [15]

    Maecker H. Plasmastromungen in lichtbogen infolge eigenmagnetischer kompression[J]. Zeitschrift für Physik, 1955, 141(1-2): 198 − 216.

    [16] 安藤弘平, 长谷川光雄. 焊接电弧现象[M]. 北京: 机械工业出版社, 1985.

    Ando K, Hasegawa M. The phenomenon of welding arc[M]. Beijing: China Machine Press, 1985.

    [17]

    Liu L, Xu X, Xu G, et al. Effect of laser on double-arc physical characteristics in pulsed laser induced double-TIG welding[J]. The International Journal of Advanced Manufacturing Technology, 2021, 119(3-4): 1515 − 1529.

图(9)  /  表(4)
计量
  • 文章访问数:  316
  • HTML全文浏览量:  33
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-09
  • 网络出版日期:  2023-01-17
  • 刊出日期:  2023-03-24

目录

    /

    返回文章
    返回