高级检索

热循环载荷下POP堆叠焊点应力分析与优化

高超, 黄春跃, 梁颖, 刘首甫, 张怀权

高超, 黄春跃, 梁颖, 刘首甫, 张怀权. 热循环载荷下POP堆叠焊点应力分析与优化[J]. 焊接学报, 2023, 44(2): 74-82. DOI: 10.12073/j.hjxb.20220330001
引用本文: 高超, 黄春跃, 梁颖, 刘首甫, 张怀权. 热循环载荷下POP堆叠焊点应力分析与优化[J]. 焊接学报, 2023, 44(2): 74-82. DOI: 10.12073/j.hjxb.20220330001
GAO Chao, HUANG Chunyue, LIANG Ying, LIU Shoufu, ZHANG Huaiquan. Stress analysis and optimization of POP stacked solder joints under thermal cyclic load[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 74-82. DOI: 10.12073/j.hjxb.20220330001
Citation: GAO Chao, HUANG Chunyue, LIANG Ying, LIU Shoufu, ZHANG Huaiquan. Stress analysis and optimization of POP stacked solder joints under thermal cyclic load[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 74-82. DOI: 10.12073/j.hjxb.20220330001

热循环载荷下POP堆叠焊点应力分析与优化

基金项目: 国家自然科学基金资助项目(62164002);广西自然科学基金资助项目(2020GXNSFAA159071);成都大学模式识别与智能信息处理四川省高校重点实验室开放基金资助项目(MSSB-2022-02);桂林电子科技大学研究生教育创新计划资助项目(2023YCXB01,2022YCXS008)
详细信息
    作者简介:

    高超,博士研究生;主要从事微电子封装及组装技术方面的科研工作; Email: gaochao6951@163.com

    通讯作者:

    黄春跃,博士,教授,博士研究生导师; Email: hcymail@163.com.

  • 中图分类号: TG 404

Stress analysis and optimization of POP stacked solder joints under thermal cyclic load

  • 摘要: 建立叠层封装(packaging on packaging,POP)堆叠焊点有限元模型,基于ANAND本构方程,分析了热循环载荷下焊点应力分布状态及热疲劳寿命;基于灵敏度法分析了POP封装结构参数对焊点热应力的影响显著性;基于响应面法建立POP堆叠焊点热应力与结构参数的回归方程,并结合粒子群算法对结构参数进行了优化. 结果表明,焊点与铜焊盘接触处应力最大,该处会率先产生裂纹,上层焊点高度和下层焊点高度对POP堆叠焊点热应力影响较为显著;最优结构参数水平组合为上层焊点高度0.35 mm、下层焊点高度0.28 mm、中层印刷电路板厚度0.26 mm,优化后上、下两层焊点的最大热应力分别下降了0.816和1.271 MPa,延长了POP堆叠焊点热疲劳寿命.
    Abstract: The finite element model of packaging on packaging(POP) stacked solder joints was established, and the stress distribution state and thermal fatigue life of the solder joints under thermal cyclic load were analyzed based on the ANAND constitutive equation. The significance of the influence of the structural parameters of the POP package on the thermal stress of the solder joints was analyzed based on the sensitivity method. The regression equation of the thermal stress of the POP stacked solder joints and the structural parameters was established based on the response surface method, and the structural parameters were optimized by combining the particle swarm algorithm. The results show that the stress is highest at the contact between the solder joint and the copper solder disc, which is the location of the crack initiation. The upper and lower solder joint heights have a significant effect on the thermal stresses in POP stacked joints. The optimal combination of structural parameter levels is 0.35 mm for the upper solder joint height, 0.28 mm for the lower solder joint height and 0.26 mm for the middle PCB thickness, which reduces the maximum thermal stress of the upper and lower solder joints by 0.816 and 1.271 MPa, respectively, and prolongs the thermal fatigue life of POP stacked joints.
  • 图  1   POP堆叠焊点三维封装模型

    Figure  1.   3-D model for POP stacked solder joints

    图  2   热循环加载曲线

    Figure  2.   Thermal cycle loading curve

    图  3   堆叠焊点等效应力曲线

    Figure  3.   Equivalent stress curve of stacked solder joints

    图  4   上层和下层焊点热应力分布

    Figure  4.   Thermal stress distribution of upper and lower solder joints. (a) upper solder joints; (b) lower solder joints

    图  5   上层焊点的散点图

    Figure  5.   Scatter diagram of upper solder joints. (a) thickness of intermediate PCB; (b)thickness of top PCB; (c) height of lower solder joint; (d) height of upper solder joint

    图  6   上层焊点热应力灵敏度图

    Figure  6.   Thermal stress sensitivity diagram of upper solder joints

    图  7   下层焊点的散点图

    Figure  7.   Scatter diagram of lower solder joints. (a) thickness of intermediate PCB; (b) thickness of top PCB; (c) height of lower solder joint; (d) height of upper solder joint

    图  8   下层焊点热应力灵敏度图

    Figure  8.   Thermal stress sensitivity diagram of lower solder joints

    图  9   迭代最优解变化图

    Figure  9.   Variation diagram of optimal solution in iterative

    图  10   最优参数组合上层和下层焊点热应力分布

    Figure  10.   Thermal stress distribution diagram of upper and lower solder joints with optimal parameter combination. (a) upper solder joints; (b) lower solder joints

    表  1   POP堆叠焊点尺寸

    Table  1   POP stacked solder joint dimensions  mm

    上层焊点下层焊点
    高度h1直径d1间距δ1高度h2直径d2间距δ2
    0.300.400.650.230.300.50
    下载: 导出CSV

    表  2   材料参数

    Table  2   Material parameters

    材料弹性模量E/GPa泊松比μ热膨胀系数α/10−6K−1
    SAC30538.7 − 16.9T0.351.25
    芯片1630.282.5
    PCB板3000.203.5
    铜焊盘1170.3014.3
    下载: 导出CSV

    表  3   SAC305钎料ANAND模型参数

    Table  3   SAC305 filler metal ANAND model parameters

    初始形变阻抗值$ {{{S}}_{ \rm{o}}} $/MPa应力乘子ξ常数$A$/104s−1变形阻力饱和值系数$ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{S} $/MPa激活能常数(Q/R)/K−1硬化/软化常数$ {{{h}}_{{{\rm{o}}}}} $/MPa应变率敏感性指数m
    饱和值应力软硬化
    45.9258758.3746093500.09421.50.015
    下载: 导出CSV

    表  4   焊点粘塑性应变能密度增量

    Table  4   Viscoplastic strain energy density increment of solder joints              J/m3

    焊点位置应变能密度增量ΔWave
    上层82 822.671,83 134.183,83 208.574
    下层26 745.566,26 810.497,26 863.966
    下载: 导出CSV

    表  5   封装体结构参数取值

    Table  5   Value of package structure parameters mm

    上层焊点高度HS2下层焊点高度HS1中层PCB厚度δP2顶层PCB厚度δP3
    0.25 ~ 0.350.18 ~ 0.280.26 ~ 0.340.10 ~ 0.16
    下载: 导出CSV

    表  6   因素水平表

    Table  6   Factor level table

    水平上层焊点高度HS2 /mm下层焊点高度HS1 /mm中层PCB厚度δP2 /mm
    −10.250.180.26
    00.300.230.30
    10.350.280.34
    下载: 导出CSV

    表  7   响应面设计组合与热应力分析结果

    Table  7   Response Surface design combination and thermal stress analysis results

    试验编号上层焊点高度HS2 /mm下层焊点高度HS1 /mm中层PCB厚度δP2 /mm下层焊点应力y1 /MPa上层焊点应力y2 /MPa
    10.250.180.3045.72641.402
    20.300.230.3043.90840.422
    30.350.180.3045.73139.720
    40.350.230.2643.87639.629
    50.250.230.2643.88741.488
    60.350.280.3042.66139.681
    70.300.180.2645.45340.380
    80.300.280.2642.64240.363
    90.300.230.3043.90840.422
    100.300.230.3043.90840.422
    110.300.180.3445.51640.416
    120.300.280.3442.68240.451
    130.300.230.3043.90840.422
    140.250.230.3443.93141.311
    150.250.280.3042.66941.356
    160.350.230.3443.92339.755
    170.300.230.3043.90840.422
    下载: 导出CSV

    表  8   响应面分析结果

    Table  8   Response surface analysis results

    焊点P回归方程系数R2回归方程调整系数Ra2回归方程预测系数Rp2
    上层< 0.00010.99900.99780.9847
    下层< 0.00010.99830.99620.9736
    下载: 导出CSV
  • [1] 弗林·卡森. 封装体叠层(PoP)技术及其应用[J]. 集成电路应用, 2015(2): 38 − 41. doi: 10.3969/j.issn.1674-2583.2015.02.012

    Flynn Carson. Package-on-Package (PoP) technology and its applications[J]. Application of IC, 2015(2): 38 − 41. doi: 10.3969/j.issn.1674-2583.2015.02.012

    [2]

    Honarvar S, Nourani A, Karimi M. Effect of thermal treatment on fracture behavior of solder joints at various strain rates: Comparison of cyclic and constant temperature[J]. Engineering Failure Analysis, 2021, 128(8): 105636.

    [3] 韦何耕, 黄春跃, 梁颖, 等. 热循环加载条件下PBGA叠层无铅焊点可靠性分析[J]. 焊接学报, 2013, 34(10): 91 − 94.

    Wei Hegeng, Huang Chunyue, Liang Ying, et al. Reliability analysis of plastic ball grid array double-bump lead-free solder joint under thermal cycle[J]. Transactions of the China Welding Institution, 2013, 34(10): 91 − 94.

    [4] 王洋. 不同温度环境下POP堆叠封装的可靠性研究[D]. 镇江: 江苏大学, 2016.

    Wang Yang. Research on the reliability of package-on-package in different temperature environment[D]. Zhenjiang: Jiangsu University, 2016.

    [5] 孙磊, 张屹, 陈明和, 等. 3D封装芯片焊点可靠性有限元分析[J]. 焊接学报, 2021, 42(1): 49 − 53. doi: 10.12073/j.hjxb.20201021002

    Sun Lei, Zhang Yi, Chen Minghe, et al. Finite element analysis of solder joint reliability of 3D packaging chip[J]. Transactions of the China Welding Institution, 2021, 42(1): 49 − 53. doi: 10.12073/j.hjxb.20201021002

    [6] 王红霞, 王蓓, 冉红锋, 等. TMV POP热翘曲变形及可靠性[J]. 半导体技术, 2018, 43(6): 462 − 467.

    Wang Hongxia, Wang Bei, Ran Hongfeng, et al. Warpage behaviors and reliability in TMV POP[J]. Semiconductor Technology, 2018, 43(6): 462 − 467.

    [7] 刘昭云, 杨雪霞. 热循环载荷下POP堆叠电子封装的可靠性研究[J]. 太原科技大学学报, 2018, 39(6): 473 − 478. doi: 10.3969/j.issn.1673-2057.2018.06.011

    Liu Zhaoyun, Yang Xuexia. Research on reliability of POP stacked electronic package under thermal cycling load[J]. Journal of Taiyuan University of Science and Technology, 2018, 39(6): 473 − 478. doi: 10.3969/j.issn.1673-2057.2018.06.011

    [8]

    Shen Y A, Zhou S, Li J, et al. Sn-3.0Ag-0.5Cu/Sn-58Bi composite solder joint assembled using a low-temperature reflow process for PoP technology[J]. Materials & Design, 2019, 183: 108144.

    [9]

    Sitek J, Koscielski M, Borecki J, et al. The dependence of reliability and mechanical strength of the solder joints in 3D PoP structures from sizes of solder powders applied in soldering materials[J]. Soldering & Surface Mount Technology, 2017, 29(1): 23 − 27.

    [10]

    Chen L , Lai X , Xiao Y , et al. Analysis of POP solder ball thermal cycling fatigue life based on stress strain[C]// 2012 13th International Conference on Electronic Packaging Technology and High Density Packaging. IEEE, Guilin, China, 2012.

    [11]

    Li D B, Wang J P, Yang B, et al. Thermal performance and fatigue life prediction of POP stacked chip assembly under thermal cycling load[J]. Microelectronics International, 2020, 34(7): 165 − 171.

    [12] 田茹玉, 王晨曦, 田艳红, 等. 极限温度下CBGA焊点热冲击疲劳寿命预测[J]. 焊接学报, 2017, 38(10): 93 − 97. doi: 10.12073/j.hjxb.20151208005

    Tian Ruyu, Wang Chenxi, Tian Yanhong, et al. Life prediction of CBGA soldered joints under extreme temperature thermal shock[J]. Transactions of the China Welding Institution, 2017, 38(10): 93 − 97. doi: 10.12073/j.hjxb.20151208005

    [13]

    Zhang L, Han J G, Guo Y H, et al. Anand model and FEM analysis of SnAgCuZn lead-free solder joints in wafer level chip scale packaging devices[J]. Microelectronics Reliability, 2014, 54(1): 281 − 286. doi: 10.1016/j.microrel.2013.07.100

    [14]

    Darveaux R. Effect of simulation methodology on solder joint crack growth correlation and fatigue life prediction[J]. Journal of Electronic Packaging, 2002, 124(3): 147 − 154. doi: 10.1115/1.1413764

    [15] 赵胜军, 黄春跃, 梁颖, 等. BGA无铅焊点再流焊焊后残余应力分析与优化[J]. 机械工程学报, 2020, 56(10): 86 − 94. doi: 10.3901/JME.2020.10.086

    Zhao Shengjun, Huang Chunyue, Liang Ying, et al. Analysis and optimization of residual stress after reflow soldering of BGA lead free solder joints[J]. Journal of Mechnical Engineering, 2020, 56(10): 86 − 94. doi: 10.3901/JME.2020.10.086

    [16] 关挺, 钟绍华, 周才, 等. 基于响应面和粒子群算法的悬置多目标优化[J]. 物流技术, 2017(10): 107 − 114. doi: 10.3969/j.issn.1005-152X.2017.10.021

    Guan Ting, Zhong Shaohua, Zhou Cai, et al. Multi-objective optimization of Cab suspension based on response surface and PSO[J]. Logistics Technology, 2017(10): 107 − 114. doi: 10.3969/j.issn.1005-152X.2017.10.021

图(10)  /  表(8)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  55
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-29
  • 网络出版日期:  2023-02-16
  • 刊出日期:  2023-02-24

目录

    /

    返回文章
    返回