Microstructure and properties of CoCrFeNiSix high-entropy alloy coating by laser cladding
-
摘要: 为了探究Si元素含量对CoCrFeNiSix(x=0.5,1.0,1.5)高熵合金涂层的组织与性能的影响,采用激光熔覆技术制备高熵合金涂层,通过X射线衍射仪、扫描电子显微镜、能谱仪、显微硬度仪、摩擦磨损试验机、电化学工作站等表征了涂层的物相组成、微观组织以及元素分布、硬度值、耐磨性能和耐腐蚀性能. 研究表明,随着Si元素的含量增加,合金物相由单相面心立方结构转变为面心立方结构、Si元素化合物(σ)相结构,最后形成面心立方结构、体心立方结构和σ相混合结构.涂层的组织主要由柱状晶转变成树枝晶,最后形成胞状晶;同时,涂层的硬度不断提高,当Si含量为1.5时,涂层的平均硬度值达到最高,为619.04 HV0.2,约为基体的2.67倍.涂层的磨损量、摩擦系数随着Si含量的增加而减少,耐磨性能显著提高.涂层在3.5%NaCl溶液中腐蚀性能随着Si含量的增加先增加后降低,当Si含量为1.0时,涂层的耐腐蚀性能最优.Abstract: In order to investigate the effect of Si content on the microstructure and properties of CoCrFeNiSix (x=0.5, 1.0, 1.5) high-entropy alloy coating, the high-entropy alloy coating was prepared by laser cladding technology. The phase composition, microstructure, element distribution, hardness value, wear resistance and corrosion properties of the coating were characterized by X-ray diffraction, scanning electron microscopy (SEM), energy dispersive spectroscopy, microhardness tester, friction and wear tester, and electrochemical workstation. The results show that with the increase of Si content, the alloy phase changes from single-phase face-centered cubic structure to face-centered cubic structure, silicon compound (σ) phase structure, and finally form face-centered cubic structure, body-centered cubic structure and σ mixed structure. The microstructure of the coating mainly changes from columnar crystals to dendritic crystals and finally to cellular crystals. At the same time, the hardness of the coating also increases. When the Si content is 1.5, the average hardness of the coating reaches 619.04 HV0.2, which is about 2.67 times that of the substrate. The wear amount and friction coefficient of the coating decreased with the increase of Si content, and the wear resistance of the coating increased significantly. In 3.5%NaCl solution, the corrosion performance of the coating increases first and then decreases with the increase of Si content. When Si content is 1.0, the corrosion performance of the coating is optimal.
-
Keywords:
- laser cladding /
- high-entropy alloy coating /
- wear resistance /
- corrosion resistance
-
-
图 10 基体和CoCrFeNiSix (x = 0.5, 1.0, 1.5)高熵合金涂层磨损形貌
Figure 10. Wear morphology of matrix and CoCrFeNiSix (x = 0.5, 1.0, 1.5) high-entropy alloy coatings. (a) matrix; (b) matrix (high magnification); (c) CoCrFeNiSi0.5; (d) CoCrFeNiSi0.5 (high magnification); (e) CoCrFeNiSi1.0; (f) CoCrFeNiSi1.0 (high magnification); (g) CoCrFeNiSi1.5; (h) CoCrFeNiSi1.5 (high magnification)
图 13 基体和CoCrFeNiSix (x = 0.5,1.0,1.5)高熵合金涂层在3.5%NaCl溶液中电化学腐蚀形貌
Figure 13. Electrochemical corrosion morphology of substrate and CoCrFeNiSix (x = 0.5, 1.0, 1.5) high-entropy alloy coating in 3.5%NaCl solution. (a) matrix; (b) matrix (high magnification); (c) CoCrFeNiSi0.5; (d) CoCrFeNiSi0.5 (high magnification); (e) CoCrFeNiSi1.0; (f) CoCrFeNiSi1.0 (high magnification); (g) CoCrFeNiSi1.5; (h) CoCrFeNiSi1.5 (high magnification)
表 1 试验工艺参数
Table 1 Experimental process parameters
激光功率
P/kW扫描速度
v/(mm·s−1)光斑直径
d/mm搭接率
η(%)1.1 6 2 50 表 2 CoCrFeNiSix (x = 0.5, 1.0, 1.5) 高熵合金涂层的价电子浓度
Table 2 Valence electron concentrations of CoCrFeNiSix (x = 0.5, 1.0, 1.5) high-entropy alloy coatings
x 价电子浓度VEC 0.5 7.78 1.0 7.40 1.5 7.09 表 3 CoCrFeNiSix (x = 0.5, 1.0, 1.5)的EDS分析(原子分数, %)
Table 3 EDS analysis of CoCrFeNiSix (x = 0.5, 1.0, 1.5)
x值 区域 Co Cr Fe Ni Si 0.5 设计含量 22.22 22.22 22.22 22.22 11.10 A 20.86 22.83 27.62 17.37 11.32 B 18.11 22.56 22.51 20.84 15.98 1.0 设计含量 20 20 20 20 20 C 16.49 16.30 42.93 13.26 11.02 D 14.91 14.77 33.58 18.19 18.55 x = 1.5 设计含量 18.18 18.18 18.18 18.18 27.27 E 6.31 6.81 33.63 5.26 47.99 F 8.19 15.17 39.24 9.00 28.40 表 4 CoCrFeNiSix (x = 0.5,1.0,1.5)高熵合金磨损形貌EDS分析(原子分数,%)
Table 4 EDS analysis of wear morphology of CoCrFeNiSix (x = 0.5, 1.0, 1.5) high-entropy alloy
x值 位置 Co Cr Fe Ni Si O 0.5 G 8.14 6.92 27.97 7.81 2.55 46.60 1.0 H 5.59 5.38 28.97 5.25 3.87 50.94 1.5 J 5.86 6.48 22.72 5.24 8.75 50.95 表 5 CoCrFeNiSix (x = 0.5,1.0,1.5)高熵合金涂层的电化学参数
Table 5 Electrochemical parameters of CoCrFeNiSix (x = 0.5, 1.0, 1.5) high-entropy alloy coating
合金 腐蚀电位
Ecorr /mV自腐蚀电流密度
icorr /(10−2A·cm−2)基体 −1 042.180 32.8 CoCrFeNiSi0.5 −997.063 1.92 CoCrFeNiSi1.0 −955.391 1.39 CoCrFeNiSi1.5 −1 039.342 3.37 表 6 CoCrFeNiSix (x = 0.5,1.0,1.5)高熵合金涂层电化学阻抗拟合结果
Table 6 Electrochemical impedance fitting results of CoCrFeNiSix (x = 0.5, 1.0, 1.5) high-entropy alloy coating
合金 溶液电阻Rs /Ω 钝化膜电容CPE1 /10−6F 钝化膜电阻Rf /103Ω 涂层的电容CPE2 /10−6F 电荷转移电阻Rct /102Ω 基体 6.045 39.58 0.047 9 1.931 1.632 CoCrFeNiSi0.5 1.392 16.83 0.011 0 8.507 39.62 CoCrFeNiSi1.0 9.401 9.698 0.007 1 5.869 49.05 CoCrFeNiSi1.5 8.83 13.43 0.513 5 31.96 38.35 -
[1] Yeh J W, Chen S K, Lin S J, et al. Microstructural control and properties optimization of high-entropy alloys[J]. Advanced Engineering Materials, 2004, 6: 299 − 303. doi: 10.1002/adem.200300567
[2] Chang Xuejiao, Zeng Mengqi, Liu Keli, et al. Phase engineering of high-entropy alloys[J]. Advanced Materials, doi: 10.1002/adma.201907226.
[3] 张杨, 艾云龙, 陈卫华, 等. 基于相结构的高熵合金设计[J]. 特种铸造及有色合金, 2021, 41(1): 37 − 42. doi: 10.15980/j.tzzz.2021.01.007 Zhang Yang, Ai Yunlong, Chen Weihua, et al. Design of high entropy alloy based on the phase structure[J]. Special Casting & Non-Ferrous Alloys, 2021, 41(1): 37 − 42. doi: 10.15980/j.tzzz.2021.01.007
[4] Tsai Minghung, Li Jianhong, Fan Anchen, et al. Incorrect predictions of simple solid solution high entropy alloys: cause and possible solution[J]. Scripta Materialia, 2017, 127: 6 − 9. doi: 10.1016/j.scriptamat.2016.08.024
[5] Torbati-Sarraf H, Mitra Shabani, Paul D, et al. The influence of incorporation of Mn on the pitting corrosion performance of CrFeCoNi high entropy alloy at different temperatures[J]. Materials & Design, 2019, 184: 108170.
[6] Liu H, Sun S, Zhang T, et al. Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding[J]. Surface and Coatings Technology, 2020, 405(10): 126522.
[7] Huang L, Wang X, Jia F, et al. Effect of Si element on phase transformation and mechanical properties for FeCoCrNiSix high entropy alloys[J]. Materials Letters, 2021, 282(12815): 128809.
[8] 温晓灿, 张凡, 雷智锋, 等. 高熵合金中的第二相强韧化[J]. 中国材料进展, 2019, 38(3): 242 − 250. doi: 10.7502/j.issn.1674-3962.2019.03.06 Wen Xiaocan, Zhang Fan, Lei Zhifeng, et al. Second phase strengthening in high-entropy alloys[J]. Progress in Materials China, 2019, 38(3): 242 − 250. doi: 10.7502/j.issn.1674-3962.2019.03.06
[9] 牛利冲, 李杰, 赵思杰, 等. FeCoNiCrMn系高熵合金变形机制的研究进展[J]. 中国有色金属学报, 2022, 32(8): 2316 − 2326. Niu Lichong, Li Jie, Zhao Sijie, et al. Research progress on deformation mechanism of FeCoNiCrMn high entropy alloy system[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(8): 2316 − 2326.
[10] Gu Zhen, Xi Shengqi, Sun Chongfeng. Microstructure and properties of laser cladding and CoCr2.5FeNi2Tix high-entropy alloy composite coatings[J]. Journal of Alloys and Compounds, 2020, 819: 152986 − 152995. doi: 10.1016/j.jallcom.2019.152986
[11] Liu Kui, Wang Zhenhua, Yin Zengbin, et al. Effect of Co content on microstructure and mechanical properties of ultrafine grained WC-Co cemented carbide sintered by spark plasma sintering[J]. Ceramics International, 2018, 44(15): 18711 − 18718. doi: 10.1016/j.ceramint.2018.07.100
[12] Fang Wei, Yu Haoyang, Chang Ruobin, et al. Microstructure and mechanical properties of Cr-rich Co-Cr-Fe-Ni high entropy alloys designed by valence electron concentration[J]. Materials Chemistry and Physics, 2019, 238: 121897 − 121903. doi: 10.1016/j.matchemphys.2019.121897
[13] Ma Minyu, Han Aihua, Zhang Zunjun, et al. The role of Si on microstructure and high-temperature oxidation of CoCr2FeNb0.5Ni high-entropy alloy coating[J]. Corrosion Science, 2021, 185: 109417.
[14] Chandrakar R, Kumar A, Chandraker S, et al. Microstructural and mechanical properties of AlCoCrCuFeNiSix (x = 0 and 0.9) high entropy alloys[J]. Vacuum:Technology Applications & Ion Physics:the International Journal & Abstracting Service for Vacuum Science & Technology, 2021, 184: 184 − 189.
[15] 韩显柱, 杨义成, 张彦东, 等. 激光同轴送粉熔覆工艺特性研究[J]. 金属加工(热加工), 2021(8): 9 − 13. Han Xianzhu, Yang Yicheng, Zhang Yandong, et al. Research on forming characteristics of laser coaxial powder feeding cladding[J]. Metal Working (Hot Working), 2021(8): 9 − 13.
[16] Aghili S E, Shamanian M, Najafabadi R A, et al. Microstructure and oxidation behavior of NiCr-chromium carbides coating prepared by powder-fed laser cladding on titanium aluminide substrate[J]. Ceramics International, 2020, 46(2): 1668 − 1679.
[17] 郝文俊, 孙荣禄, 牛伟, 等. 激光熔覆CoCrFeNiSix高熵合金涂层的组织及性能[J]. 表面技术, 2021, 50(5): 87 − 94. Hao Wenjun, Sun Ronglu, Niu Wei, et al. Microstructure and properties of CoCrFeNiSix high entropy alloy coatings by laser cladding[J]. Surface Technology, 2021, 50(5): 87 − 94.
[18] Tsai M H, Hao Y, Cheng G, et al. Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy[J]. Intermetallics, 2013, 33: 81 − 86. doi: 10.1016/j.intermet.2012.09.022
[19] 刘昊, 高强, 郜文鹏, 等. 激光熔覆CoCrFeNiNb(x)高熵合金涂层的高温摩擦磨损性能[J]. 摩擦学学报, 2022, 42(5): 966 − 977. Liu Hao, Gao Qiang, Gao Wenpeng, et al. Friction and wear properties of CoCrFeNiNb(x) high entropy alloy coating by laser cladding at high temperature[J]. Tribology Journal, 2022, 42(5): 966 − 977.
[20] 刘昊, 高强, 满家祥, 等. 激光熔覆CoCrFeMnNiTix高熵合金涂层的微观组织及性能研究[J]. 中国激光, 2022, 49(8): 18 − 29. Liu Hao, Gao Qiang, Man Jiaxiang, et al. Microstructure and properties of CoCrFeMnNiTix High Entropy Alloy Coatings by laser cladding[J]. China Laser, 2022, 49(8): 18 − 29.
[21] 董世知, 孟旭, 马壮等. WC和Al2O3对氩弧熔覆FeAlCoCrCuTi0.4高熵合金涂层组织和耐冲蚀性能影响[J]. 焊接学报, 2019, 40(7): 127 − 132. doi: 10.12073/j.hjxb.2019400194 Dong Shizhi, Meng Xu, Ma Zhuang et al. Effect of WC and Al2O3 on microstructure and erosion resistance of FeAlCoCrCuTi0.4 High Entropy Alloy coated by argon arc cladding[J]. Transactions of the China Welding Institution, 2019, 40(7): 127 − 132. doi: 10.12073/j.hjxb.2019400194
[22] Liang M L, Wang C L, Liang C L, et al. Microstructure and sliding wear behavior of FeCoNiCr0.8Al0.2 high-entropy alloy for different durations[J]. International Journal of Refractory Metals and Hard Materials, 2021, 103: 105767.
[23] Kong D, Wang W, Zhang T, et al. Effect of superheating on microstructure and wear resistance of Al1.8CrCuFeNi2 high-entropy alloy[J]. Materials Letters, 2022, 311: 131613. doi: 10.1016/j.matlet.2021.131613
[24] Wu H, Zhang S, Wang Z Y, et al. New studies on wear and corrosion behavior of laser cladding FeNiCoCrMo x high entropy alloy coating: the role of Mo[J]. International Journal of Refractory Metals and Hard Materials, 2022, 102: 105721 − 105731. doi: 10.1016/j.ijrmhm.2021.105721
[25] 苏允海, 梁学伟, 邓越, 等. FeAlCuCrNiNbx系高熵合金堆焊层的组织及性能分析[J]. 焊接学报, 2020, 41(4): 38 − 43. Su Yunhai, Liang Xuewei, Deng Yue, et al. Microstructure and property analysis of FeAlCuCrNiNbx high entropy alloy surfacing layer[J]. Transactions of the China Welding Institution, 2020, 41(4): 38 − 43.
[26] Aliyu Ahmed, Srivastava Chandan. Phase constitution, surface chemistry and corrosion behavior of electrodeposited MnFeCoNiCu high entropy alloy-graphene oxide composite coatings[J]. Surface & Coatings Technology, 2022, 429(15): 127943 − 127955.
-
期刊类型引用(1)
1. 朱明,祁先刚,张宗智,石玗. 采用激光预置铜层钛钢接头成形与组织. 焊接学报. 2025(03): 18-26+88 . 本站查看
其他类型引用(0)