Simulation analysis of droplet action on keyhole during laser-MIG composite welding of aluminum alloy
-
摘要: 将复合焊接过程中的反冲压力、表面张力等驱动力及熔滴过渡行为考虑在内,建立5A06铝合金激光-MIG复合焊接数值模拟热流耦合模型,由于熔池内的流动及匙孔稳定性对焊接性能有重要影响,因此针对熔滴与匙孔及熔池稳定性的影响进行了系统讨论,并且通过采用不同的熔滴落入位置进行计算.结果表明,当熔滴落入位置距激光中心较近时,熔滴对匙孔的冲击作用较大,匙孔壁的平均流速和波动频率有所增加,匙孔更易由于周期性的熔滴过渡而产生液桥发生闭合,熔滴落入位置还会影响匙孔深宽比,进而影响激光能量的菲涅尔吸收.
-
关键词:
- 激光-MIG复合焊接 /
- 熔滴过渡 /
- 匙孔稳定性 /
- 数值模拟
Abstract: In this paper, a coupled thermal flow model for 5A06 aluminum alloy laser-MIG hybrid welding is developed, which takes account of the driving forces such as recoil pressure, surface tension and droplet transfer behavior. The flow in the molten pool and the stability of the keyhole have an important impact on the welding performance, therefore, the influence of droplet and keyhole on the stability of molten pool is discussed systematically through numerical simulation with different droplet location. It is found that the impact of the melt drop on the keyhole is greater, the average velocity and wave frequency of the keyhole wall increase, and the keyhole bridge is more likely to be closed due to the periodic droplet transition, when the melting drop is close to the laser center. In addition, the location of melting drop will also affect the ratio of depth to width of the keyhole and thus affect the Fresnel absorption of laser energy. -
-
表 1 5A06铝合金材料热物性参数
Table 1 Thermophysical properties of 5A06 aluminum alloy
密度
ρ/(kg·m−3)液相线温度
TL/K固相线温度
TS/K热膨胀系数
β/10−5K−1熔化潜热
Lm/(105J·kg−1)热导率
λ/(W·m−1·K−1)比热容
cP/(J·kg−1·K−1)辐射系数
ε2630 940 830 1.92 3.87 100 1230 0.08 表 2 不同熔滴落点条件匙孔壁面流速
Table 2 Flow velocity of keyhole wall under different melting droplet location conditions
熔滴落点与激光距离L/mm 匙孔壁最大流速vmax/(m·s−1) 匙孔壁最小流速vmin/(m·s−1) 匙孔壁平均流速v/(m·s−1) 1 1.76 0.56 1.07 2 1.52 0.46 0.85 -
[1] 钟宝华. 激光焊接技术应用现状及发展趋势[J]. 现代焊接, 2008(9): 1 − 5. Zhong Baohua. Present situation and development trend of the application of laser welding technology[J]. Modern Welding Technology, 2008(9): 1 − 5.
[2] Steen W M. Arc augmented laser processing of materials[J]. Journal of Applied Physics, 1980, 51(11): 5636 − 5641. doi: 10.1063/1.327560
[3] Stute U, Kling R, Hermsdorf J. Interaction between electrical arc and Nd: YAG laser radiation[J]. CIRP Annals-Manufacturing Technology, 2007, 56(1): 197 − 200. doi: 10.1016/j.cirp.2007.05.048
[4] 刘永翔. 厚板低碳钢窄间隙激光-MIG复合焊接工艺研究[J]. 应用激光, 2016(3): 326 − 330. doi: 10.14128/j.cnki.al.20163603.326 Liu Yongxiang. Study of laser-MIG hybrid welding of thick mild steel plates with a narrow gap[J]. Applied Laser, 2016(3): 326 − 330. doi: 10.14128/j.cnki.al.20163603.326
[5] 徐剑侠. 激光-MIG复合焊接热过程和熔池流场的数值分析[D]. 济南: 山东大学, 2017. Xu Jianxia. Numerical simulation of thermal process and fluid flow in Laser-MIG hybrid weld pool[D]. Jinan: Shandong University, 2017.
[6] 胥国祥, 武传松, 秦国梁, 等. 激光 + GMAW复合热源焊焊缝成形的数值模拟-Ⅱ. 组合式体积热源的作用模型[J]. 金属学报, 2008, 44(6): 641 − 646. doi: 10.3321/j.issn:0412-1961.2008.06.001 Xu Guoxiang, Wu Chuansong, Qin Guoliang, et al. Numerical simulation of weld formation in laser + GMAW hybrid welding-Ⅱ. Combined volumetric distribution mode of hybrid welding heat source[J]. Acta Metallurgica Sinica, 2008, 44(6): 641 − 646. doi: 10.3321/j.issn:0412-1961.2008.06.001
[7] Chen X, Yu G, He X, et al. Effect of droplet impact on molten pool dynamics in hybrid laser-MIG welding of aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1-4): 209 − 222. doi: 10.1007/s00170-017-1509-1
[8] Xu G, Li P, Li L, et al. Influence of arc power on keyhole-induced porosity in laser + GMAW hybrid welding of aluminum alloy: Numerical and experimental studies[J]. Materials, 2019, 12(8): 1328. doi: 10.3390/ma12081328
[9] Ting Y Y, Zhan X H, Gao Q Y, et al. Influence of laser power on molten pool flow field of laser-MIG hybrid welded Invar alloy[J]. Optics and Laser Technology, 2021, 133: 106539.
[10] Faraji A H, Goodarzi M, Seyedein S H, et al. Numerical modeling of heat transfer and fluid flow in hybrid laser–TIG welding of aluminum alloy AA6082[J]. The International Journal of Advanced Manufacturing Technology, 2014, 77(9-12): 2067 − 2082.
[11] 李志宁, 都东, 常保华, 等. 激光-等离子弧复合焊接熔池流动和传热的数值分析[J]. 焊接学报, 2007, 28(7): 37 − 40. Li Zhining, Du Dong, Chang Baohua, et al. Numerical simulation on flow and heat transfer in weld pool of laser-plasma hybrid welding[J]. Transactions of the China Welding Institution, 2007, 28(7): 37 − 40.
[12] 吴向阳, 徐剑侠, 高学松, 等. 激光-MIG复合焊接热过程与熔池流场的数值分析[J]. 中国激光, 2019, 46(9): 91 − 102. Wu Xiangyang, Xu Jianxia, Gao Xuesong, et al. Numerical simulation of thermal process and fluid flow field in laser-MIG hybrid weld pools[J]. Chinese Journal of Lasers, 2019, 46(9): 91 − 102.
[13] 胥国祥, 张卫卫, 刘朋, 等. 激光 + GMAW复合热源焊熔池流体流动的数值分析[J]. 金属学报, 2015, 51(6): 713 − 723. Xu Guoxiang, Zhang Weiwei, Liu Peng, et al. Numerical analysis of fliud flow in laser + GMAW hybrid welding[J]. Acta Metallurgica Sinica, 2015, 51(6): 713 − 723.
[14] Siewert E, Schein J, Forster G. Determination of enthalpy, temperature, surface tension and geometry of the material transfer in PGMAW for the system argon–iron[J]. Journal of Physics D:Applied Physics, 2013, 46(22): 224008. doi: 10.1088/0022-3727/46/22/224008
[15] 高学松. 搭接接头摆动激光-GMAW复合焊接传热过程与熔池流场的数值分析[D]. 济南: 山东大学, 2019. Gao Xuesong. Numerical analysis of thermal process and fluid flow in weld pool during oscillating laser-GMAW hybrid welding of lap joints[D]. Jinan: Shandong University, 2019.
[16] 张聃. Invar合金激光-MIG复合焊接过程多相耦合流场行为研究[D]. 南京: 南京航空航天大学, 2018. Zhang Dan. Study on multiphase coupled flow field behavior during laser-MIG hybrid welding of invar alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
[17] 张皓庭. 激光 + GMAW复合热源焊接熔池与小孔动态行为的数值模拟[D]. 济南: 山东大学, 2015. Zhang Haoting. Numerical analysis of weld pool and keyhole dynamics in laser + GMAW hybrid welding[D]. Jinan: Shandong University, 2015.
[18] Cho J H, Na S J. Three-dimensional analysis of molten pool in GMA-laser hybrid welding[J]. Welding Journal, 2009, 88(4): 35 − 44.
[19] 赵琳, 塚本进, 荒金吾郎, 等. 激光-电弧复合焊焊缝合金元素分布的研究[J]. 中国激光, 2015, 42(4): 210 − 217. Zhao Lin, Zhong Benjin, Huang Jinwulang, et al. Distribution of wire feeding elements in laser-arc hybrid welds[J]. Chinese Journal of Lasers, 2015, 42(4): 210 − 217.
[20] Ning J, Zhang L J, Na S J, et al. Numerical study of the effect of laser-arc distance on laser energy coupling in pulsed Nd: YAG laser/TIG hybrid welding[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91: 1129 − 1143. doi: 10.1007/s00170-016-9812-9
-
期刊类型引用(12)
1. 周浩南,孙文磊,王伟,张志虎. 面向涂层裂纹的激光熔覆预测模型研究. 热加工工艺. 2024(14): 27-32 . 百度学术
2. 郑世茂,刘玉国,王豪,王新佩,陈洪堂. 长直焊缝自动焊接设备研究. 南方农机. 2023(10): 127-128+154 . 百度学术
3. 王颖,高胜,吴立明. 基于胶囊网络的TIG熔透预测. 焊接. 2023(04): 15-20+28 . 百度学术
4. 黄威威,游德勇,高向东,张艳喜,黄宇辉. 基于相关分析和神经网络的激光焊接稳态识别. 激光技术. 2022(03): 312-319 . 百度学术
5. 吴月玉,张弓,林群煦,侯至丞,杨文林. 机器人TIG焊接的焊缝形貌遗传神经网络预测. 制造业自动化. 2022(07): 86-90 . 百度学术
6. 刘秀航,黄宇辉,张艳喜,高向东. 基于BP神经网络补偿卡尔曼滤波的激光-MIG复合焊缝熔宽在线检测. 中国激光. 2022(16): 115-121 . 百度学术
7. 陶永,兰江波,任帆,王田苗,江山,高赫,温宇方. 基于自适应模糊神经网络的机器人焊接焊缝外形预测方法. 计算机集成制造系统. 2022(11): 3643-3651 . 百度学术
8. 刘天元,鲍劲松,汪俊亮,顾俊. 融合时序信息的激光焊接熔透状态识别方法. 中国激光. 2021(06): 228-238 . 百度学术
9. 吴月玉,张弓,林群煦,侯至丞,杨文林,刘胜祥,徐群华,张雨航. 焊接机器人特征参数预测方法的研究综述与展望. 机床与液压. 2021(15): 168-173+199 . 百度学术
10. 成慧翔,马艳娥,李新卫. 基于改进神经网络的激光焊接偏差智能识别研究. 激光杂志. 2021(12): 165-169 . 百度学术
11. 火巧英,闫海宁,涂本荣,陆安进. 焊接工艺参数对Q345NQR2耐候钢激光焊焊缝成形的影响. 焊接技术. 2020(08): 16-18+105-106 . 百度学术
12. 范鹏飞,张冠. 基于线性回归和神经网络的金属陶瓷激光熔覆层形貌预测. 表面技术. 2019(12): 353-359+368 . 百度学术
其他类型引用(6)