Microstructure and properties of laser-MIG hybrid welded X80 and X100 steel dissimilar joint
-
摘要: 采用激光-MIG复合焊对X80管线钢和X100管线钢进行焊接,研究了激光功率对复合焊接头的焊缝形貌、显微组织、硬度、强度和韧性的影响规律. 结果表明,激光功率从2.0 kW增大至3.5 kW时,盖面焊缝熔宽和熔深增加,激光区熔深明显增加; 激光区焊缝中AF含量增加、LB含量减少,X100侧粗晶热影响区和细晶热影响区中条状贝氏体含量减少,X80侧粗晶热影响区和细晶热影响区中准多边形铁素体含量增加. 复合焊接头硬度分布并不对称,最高硬度出现在X100侧熔合区部位. 复合焊接头的抗拉强度基本不随激光功率变化,拉伸试样断裂位置均为X80侧母材. 随着激光功率增大,焊接接头最高硬度和韧性均下降.Abstract: X80 and X100 pipeline steels were welded together by laser-MIG hybrid welding method. The effects of laser power on weld geometry, microstructures, hardness, tensile strength and impact toughness of the hybrid welded joints were investigated. Results show that, when laser power is elevated from 2.0 kW to 3.5 kW, both weld bead width and penetration of cap weld increase with a pronounced rise in laser zone penetration. Increasing acicular ferrite content and decreasing lath bainite content is obtained in the laser zone weld. The contents of lath bainite in coarse grained heat affected zone and fine grained heat affected zone of X100 steel side decrease. The contents of quasi-polygonal ferrite in coarse grained heat affected zone and fine grained heat affected zone of X80 steel side increase. Hardness distribution is asymmetrical with the maximum hardness occurs in the fusion zone. Tensile strength of the hybrid welded joints barely changes with varying laser powers, and all the tensile specimens fractured at base metal of X80 steel side. Maximum hardness and impact toughness of the hybrid welded joint decrease with increasing laser power.
-
-
表 1 试验材料化学成分(质量分数,%)
Table 1 The chemical composition of the experimental materials
材料 C Si Mn P S Ni Cr Cu Nb Ti Mo Fe X80 0.060 0.190 1.810 0.011 0.005 0.250 0.210 0.180 0.058 0.017 0.180 余量 X100 0.050 0.200 1.990 0.010 0.003 0.410 0.300 0.200 0.050 0.016 0.240 余量 JM-80 0.079 0.670 1.600 0.018 0.009 0.010 0.330 — — — 0.008 余量 表 2 异种钢焊接工艺参数
Table 2 Process parameters of dissimilar steels welding
序号 焊道 激光功率P/kW 焊接速度v/(m·min−1) 焊接电流I/A 电弧电压U/V 离焦量Δf/mm 1 打底 9.0 1.2 190 22 −2 盖面 2.0 0.5 240 25 0 2 打底 9.0 1.2 190 25 −2 盖面 2.5 0.5 240 25 0 3 打底 9.0 1.2 190 25 −2 盖面 3.0 0.5 240 25 0 4 打底 9.0 1.2 190 25 −2 盖面 3.5 0.5 240 25 0 表 3 复合焊接头拉伸试验结果
Table 3 Tensile test results of the hybrid welded joints
激光功率P/kW 抗拉强度Rm /MPa 断裂位置 2.0 675.5 母材 2.5 682.3 母材 3.0 688.6 母材 3.5 684.1 母材 表 4 冲击试验结果
Table 4 The results of impact test
激光功率P/kW 冲击吸收能量AKV /J 试验值 平均值 2.0 124.0 115.0 118.0 119.0 2.5 116.0 113.0 108.0 112.3 3.0 112.0 108.0 103.0 107.7 3.5 102.0 91.0 88.0 93.7 -
[1] Sharma L. Advent of different grades of HSLA pipeline steels and their structural integrity issues related to welding-‘A review’[J]. Materials Today: Proceedings, 2020(3): 3585 − 3587.
[2] Wang G, Yin L, Yao Z, et al. The evolution and distribution of microstructures in high-energy laser-welded X100 pipeline steel[J]. Materials, 2019, 12(11): 1762 − 1776. doi: 10.3390/ma12111762
[3] Qi X, Di H, Wang X, et al. Effect of secondary peak temperature on microstructure and toughness in ICCGHAZ of laser-arc hybrid welded X100 pipeline steel joints[J]. Journal of Materials Research and Technology, 2020, 9(4): 7838 − 7849. doi: 10.1016/j.jmrt.2020.05.016
[4] Wang G, Wang J, Yin L, et al. Quantitative correlation between thermal cycling and the microstructures of X100 pipeline steel laser-welded joints[J]. Materials, 2020, 13(1): 121 − 134.
[5] Takashima Yasuhito, Ito Yusuke, Lu Fenggui, et al. Fracture toughness evaluation for dissimilar steel joints by Charpy impact test[J]. Welding in the World, 2019, 63: 1243 − 1254. doi: 10.1007/s40194-019-00752-x
[6] 黄本生, 陈权, 杨江, 等. Q345/316L异种钢焊接残余应力与变形数值模拟[J]. 焊接学报, 2019, 40(2): 138 − 144. Huang Bensheng, Chen Quan, Yang Jiang, et al. Numerical simulation of welding residual stress and distortion in Q345/316L dissimilar steel[J]. Transactions of the China Welding Institution, 2019, 40(2): 138 − 144.
[7] Casalino G, Angelastro A, Perulli P, et al. Study on the fiber laser/TIG weldability of AISI 304 and AISI 410 dissimilar weld[J]. Journal of Manufacturing Processes, 2018, 35: 216 − 225. doi: 10.1016/j.jmapro.2018.08.005
[8] 周曙君, 吴友发, 杨祎, 等. 异种钢LMHW与MIG焊接头力学性能对比分析[J]. 焊接学报, 2019, 40(2): 133 − 137. Zhou Shujun, Wu Youfa, Yang Yi, et al. Comparative analysis on mechanical properties of dissimilar steel welded joints by LMHW and MIG welding[J]. Transactions of the China Welding Institution, 2019, 40(2): 133 − 137.
[9] Zhang Xiong, Mi Gaoyang, Wang Chunming. Microstructure and performance of hybrid laser-arc welded high-strength low alloy steel and austenitic stainless steel dissimilar joint[J]. Optics and Laser Technology, 2020, 122: 105878. doi: 10.1016/j.optlastec.2019.105878
[10] Zhou Xiaohui, Zhao Hongyun, Liu Fuyun, et al. Influence of energy ratio on microstructure and mechanical properties in the transition zone of hybrid laser-MIG welded AH36/316L dissimilar joints[J]. Journal of Materials Research and Technology, 2021, 15: 4487 − 4501. doi: 10.1016/j.jmrt.2021.10.046
[11] 严春妍, 张浩, 朱子江, 等. X80管线钢多道激光-MIG复合焊残余应力分析[J]. 焊接学报, 2021, 42(9): 28 − 34,41. Yan Chunyan, Zhang Hao, Zhu Zijiang, et al. Analysis of welding residual stress in multi-pass hybrid laser-MIG welded X80 pipeline steel[J]. Transactions of the China Welding Institution, 2021, 42(9): 28 − 34,41.
-
期刊类型引用(5)
1. 陈朝晖,张弛,徐鹏,曾维,吴家金,苏炜,陈宋郊,王强. 倒装焊芯片封装微通孔的一种失效机理及其优化方法. 微电子学. 2024(01): 165-170 . 百度学术
2. 朱桂兵,杨智然,孙蕾. 多场耦合载荷下微焊点的疲劳寿命分析. 微纳电子技术. 2021(12): 1077-1082 . 百度学术
3. 邹阳,郭波,段学俊,吴庆堂,魏巍,吴焕. 无铅焊点可靠性的研究进展. 焊接. 2021(08): 41-48+64 . 百度学术
4. 朱桂兵,汪春昌,刘智泉. 热力耦合场下互连微焊点的疲劳寿命分析. 中国测试. 2019(08): 33-37+43 . 百度学术
5. 邹艳明,李志强. 热冲击条件下边角倒装焊点的失效机理分析. 焊接技术. 2019(11): 33-35 . 百度学术
其他类型引用(7)