Numerical simulation research on the effect of explosive covering on explosive welding
-
摘要: 为探究炸药覆盖层厚度对爆炸焊接的影响,采用ANSYS/LS-DYNA软件并结合SPH-FEM耦合算法,对不同覆层厚度下的爆炸焊接试验进行三维数值模拟. 文中采用厚度为 20 mm 的Q235钢和厚度为 2.5 mm 的304不锈钢作为基板和复板. 根据相应的材料参数理论计算了焊接过程中的动态参数,并以此建立爆炸焊接窗口. 仿真结果表明,与无覆盖层爆炸焊接相比,覆盖层厚度为15 mm、 30 mm 和45 mm 时冲击速度分别提高了39.3%, 58.1%和68.8%,碰撞压力分别增大了41.0%, 65.6% 和80.6%. 仿真结果与试验结果基本一致. 利用SPH法进行二维数值模拟,得到了装配炸药覆盖层时复板与基板的复合界面. 仿真结果表明,复合板在覆层厚度为15 mm时具有良好的波形复合界面,且界面波形与试验金相分析结果较为吻合.Abstract: In order to research the influence of covering thickness on explosive welding, the explosive welding experiments under different covering thickness are simulated in three dimensions by using ANSYS/LS-DYNA software and combining the SPH-FEM coupling algorithm. The Q235 steel with the thickness of 20 mm and the 304 stainless steel with the thickness of 2.5 mm are used as the base plate and the flyer plate in the present study. The dynamic parameters in the welding process are calculated according to the corresponding material parameter theory, and an explosive welding window is established. The simulation results show that, compared to the explosive welding without covering, the impact velocity is increased by 39.3%, 58.1% and 68.8% respectively when the covering thickness is 15 mm, 30 mm and 45 mm. And the collision pressure is increased by 41.0%, 65.6% and 80.6% respectively. The simulation results approximately agree with the experimental results. The SPH method is used to carry out two-dimensional numerical simulation to obtain the composite interface between flyer plate and base plate when assembling covering. The simulation results show that the composite plate has a good waveform composite interface when the covering thickness is 15 mm, and the interface waveform is more consistent with the results of the metallographic analysis in the experiment.
-
Keywords:
- explosive welding /
- numerical simulation /
- covering /
- SPH-FEM coupling
-
-
表 1 乳化炸药的JWL状态方程参数
Table 1 JWL equation-of-state parameters of emulsion explosive
炸药爆速
D/(m∙s−1)炸药密度
ρ/(g·cm−3)单位体积内能
E0 /(kJ∙cm−3)材料常数1
AJWL /GPa材料常数2
BJWL/GPa材料常数3
R1材料常数4
R2材料常数5
ω3 027 1.01 3.323 326.42 5.808 9 5.8 1.56 0.57 表 2 Q235钢与304不锈钢的Johnson-Cook材料模型参数
Table 2 Parameters of Johnson-Cook mode1l of Q235 steel and SUS304 steel
材料 密度
ρ/(g·cm−3)剪切模量
G/GPa初始屈服
强度A/GPa硬度常数
B/GPa硬化指数
n应变率强化
参数c软化指数
m室内温度
Tr /K金属熔点
Tm /KQ235 7.85 77.0 0.792 0.51 0.26 0.014 1.03 294.0 1 493 SUS304 7.93 24.0 0.700 1.30 0.75 0.021 0.90 294.0 1 454 表 3 Q235钢与304不锈钢的Gruneisen状态方程参数
Table 3 Gruneisen EOS parameters of Q235 steel and SUS304 steel
材料 体积声速
C/(km·s−1)斜率系数
SGruneisen系数
γ0体积修正系数
aQ235 6.0 1.49 2.17 0.46 SUS304 4.5 1.49 1.93 0.50 表 4 胶体水覆层的材料模型与状态方程参数
Table 4 Model and EOS parameters of Colloidal water
密度
ρ/(g·cm−3)截止压力
PC/Pa动态粘度系数
MU/(10−4 N·s·m−2)体积声速
C/(km·s−1)斜率
系数SGruneisen
系数γ00.998 −10.0 8.684 0.164 7 1.921 0.35 表 5 Q235钢与304不锈钢的材料性能
Table 5 The material properties of Q235 steel and SUS304 steel
材料 密度
ρ/(g·cm−3)材料声速
C0/(km·s−1)拉伸强度
σb/GPa维氏硬度
HV/GPa材料熔点
Tm/℃热导率
κ/(W·m−1·℃−1)Q235 7.85 6.00 0.405 1.30 1 493 38 SUS304 7.93 4.50 0.560 1.70 1 454 22 表 6 不同覆层厚度下的炸药爆速计算值
Table 6 Calculation value of explosive detonation velocity under different cladding thickness
覆层厚度h/mm 炸药爆速Vd/(m·s−1) 0 2 950 15 3 398 30 3 530 45 3 582 -
[1] Fronczek D M, Wojewoda-Budka J, Chulist R, et al. Structural properties of Ti/Al clads manufactured by explosive welding and annealing[J]. Materials & Design, 2016, 91: 80 − 89.
[2] Mahmood Y, Dai K D, Chen P W, et al. Experimental and Numerical Study on Microstructure and Mechanical Properties of Ti-6Al-4V/Al-1060 Explosive Welding[J]. Metals, 2019, 9(11): 1189. doi: 10.3390/met9111189
[3] Ren B X, Tao G, Wen P, et al. Study on weldability window and interface morphology of steel tube and tungsten alloy rod welded by explosive welding[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105005. doi: 10.1016/j.ijrmhm.2019.105005
[4] Liu K Y, Chen P W, Feng J R, et al. Fabrication and characterization of the Mo/CU bimetal with thick Mo layer and high interfacial strength[J]. International Journal of Refractory Metals and Hard Materials, 2021, 94: 105383. doi: 10.1016/j.ijrmhm.2020.105383
[5] Akbari M S A A, Farhadi S P. Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel[J]. Materials & Design, 2009, 30(3): 459 − 468.
[6] Gladkovsky S V, Kuteneva S V, Sergeev S N. Microstructure and mechanical properties of sandwich copper/steel composites produced by explosive welding[J]. Materials Characterization, 2019, 154: 294 − 304. doi: 10.1016/j.matchar.2019.06.008
[7] Loureiro A, Mendes R, Ribeiro J B, et al. Effect of explosive mixture on quality of explosive welds of copper to aluminium[J]. Materials & Design, 2016, 95: 256 − 267.
[8] 邢廷勇, 郑雁军, 崔立山, 等. 时效对爆炸焊接合成TiNi/TiNi合金阻尼行为的影响[J]. 中国有色金属学会学报, 2009, 19(6): 1470 − 1473. doi: 10.1016/S1003-6326(09)60053-4 Xing Tingyong, Zheng Yanjun, Cui Lishan, et al. Influence of aging on damping behavior of TiNi/TiNi alloys synthesized by explosive welding[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(6): 1470 − 1473. doi: 10.1016/S1003-6326(09)60053-4
[9] 吴晓明, 史长根, 房中行, 等. 有无夹层的钛铝爆炸焊接能量与界面特性的对比研究[J]. 材料与设计, 2021, 197: 109279. Wu Xiaoming, Shi Changgen, Fang Zhonghang, et al. Comparative study on welding energy and Interface characteristics of titanium aluminum explosive composites with and without interlayer[J]. Materials & Design, 2021, 197: 109279.
[10] Mori D, Kasada R, Konishi S, et al. Underwater explosive welding of tungsten to reduced-activation ferritic steel F82H[J]. Fusion Engineering and Design, 2014, 89(7-8): 1086 − 1090. doi: 10.1016/j.fusengdes.2013.12.038
[11] Liu W D, Liu K X, Chen Q Y, et al. Metallic glass coating on metals plate by adjusted explosive welding technique[J]. Applied Surface Science, 2009, 255(23): 9343 − 9347. doi: 10.1016/j.apsusc.2009.07.033
[12] Sui G F, Li J S, Li H W, et al. Investigation on the explosive welding mechanism of corrosion-resisting aluminum and stainless steel tubes through finite element simulation and experiments[J]. International Journal of Minerals Metallurgy and Materials, 2012, 19(2): 151 − 158. doi: 10.1007/s12613-012-0531-4
[13] 杨明, 马宏昊, 沈兆武, 等. 炸药覆层对不锈钢与钢爆炸焊接的影响研究[J]. 推进剂, 炸药, 烟火, 2019, 44(5): 609 − 616. doi: 10.1002/prep.201800160 Yang Ming, Ma Hong-hao, Shen Zhao-wu,. et al. Study on the Effects of Explosive Covering on Explosive Welding of Stainless Steel to Steel[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(5): 609 − 616. doi: 10.1002/prep.201800160
[14] 章冠人, 陈大年. 凝聚炸药起爆动力学[M]. 北京: 国防工业出版社, 1991. Zhang Guanren, Chen Danian. Condensed Explosive Detonation Dynamics[M]. Beijing: National Defense Industry Press, 1991.
[15] 李裕春, 时党勇, 赵远. ANSYS11.0/LS-DYNA基础理论与工程实践[M]. 北京: 中国水利水电出版社, 2008. Li Yuchun, Shi Dangyong, Zhao Yuan. ANSYS11.0/LS-DYNA Basic Theory and Engineering Practice[M]. Beijing: China Water&Power Press, 2008.
[16] 辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册[M]. 北京: 机械工业出版社, 2019. Xin Chunliang, Xue Zaiqing, Tu Jian, et al. Handbook of Common Material Parameters for Finite Element Analysis. Beijing: China Machine Press, 2019.
[17] Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals applicable at high-strain rate[J]. Journal of Applied Physics, 1980, 51: 1498 − 1504. doi: 10.1063/1.327799
[18] Liu G R, Liu M B. Smoothed Particle Hydrodynamics: A Meshfree Particle Method[M]. Changsha: Hunan University Press, 2005.
[19] Walsh J, Shreffler R, Willig F. Limiting conditions for jet formation in high velocity collisions[J], Journal of Applied Physics, 1953, 24: 349359.
[20] 郑远谋. 爆炸焊接和爆炸复合材料[M]. 北京: 国防工业出版社, 2017. Zheng Yuanmou. Explosive Welding and Explosive Composite Material[M]. Beijing: National Defense Industry Press, 2017.
[21] Cowan G R, Bergmann O R, Holtzman A H. Mechanism of bond zone wave formation in explosion-clad metals[J]. Metallurgical and Materials Transactions B, 1971, 2: 3145 − 3155. doi: 10.1007/BF02814967
[22] Shao B H, Zhang K. Explosive welding principle and its application[M]. Dalian: Dalian University of Science and Technology Press, 1987.
[23] 缪广红, 马雷鸣, 吴建强, 等. 基复板间距对爆炸焊接质量影响的数值模拟[J]. 爆破, 2020, 37(2): 106 − 114. doi: 10.3963/j.issn.1001-487X.2020.02.019 Miao Guanghong, Ma Leiming, Wu Jianqiang, et al. Numerical Simulation of Influence of Spacing between Base Plate and Flyer Plate on Welding Quality[J]. Blasting, 2020, 37(2): 106 − 114. doi: 10.3963/j.issn.1001-487X.2020.02.019
[24] Zheng Z M, Yang Z S. Explosion Processing[M]. Beijing: National Defense Industry Press, 1981.
-
期刊类型引用(8)
1. 刘景城,叶晗哲,徐贵峰,娄昊,耿海滨. 不同基板热沉的铝合金电弧增材控形. 福州大学学报(自然科学版). 2024(01): 91-97 . 百度学术
2. 邢松龄,李充,周海鹏,陈高强,史清宇. 铝合金型材搅拌摩擦焊无减薄接头组织和性能. 焊接学报. 2023(11): 124-128+136 . 本站查看
3. 姜淑馨,李峰光. 丝材电弧增材制造技术的研究与应用. 铸造技术. 2022(05): 369-374 . 百度学术
4. 石玗,朱珍文,张刚,李璐鹏. 金属电弧增材成形控制关键技术及研究现状. 材料导报. 2022(12): 135-142 . 百度学术
5. 王轲,张元彬. ER5356铝合金双脉冲电弧增材制造成型工艺及组织研究. 热加工工艺. 2021(09): 20-23+28 . 百度学术
6. 王磊磊,张占辉,徐得伟,薛家祥,曾敏. 双脉冲电弧增材制造数值模拟与晶粒细化机理. 焊接学报. 2019(04): 137-140+147+167 . 本站查看
7. 张炼,张兆栋,刘黎明. 316不锈钢TIG电弧增材制造成形规律研究. 焊接技术. 2018(04): 10-14 . 百度学术
8. 柏久阳,范成磊,杨雨晨,徐艳利,李瑞,林三宝,王计辉. 2219铝合金TIG填丝堆焊成形薄壁试样组织特征. 焊接学报. 2016(06): 124-128+134 . 本站查看
其他类型引用(9)