高级检索

炸药覆盖层对爆炸焊接影响的数值模拟

缪广红, 胡昱, 艾九英, 祁俊翔, 马宏昊, 沈兆武

缪广红, 胡昱, 艾九英, 祁俊翔, 马宏昊, 沈兆武. 炸药覆盖层对爆炸焊接影响的数值模拟[J]. 焊接学报, 2023, 44(1): 40-48. DOI: 10.12073/j.hjxb.20220121002
引用本文: 缪广红, 胡昱, 艾九英, 祁俊翔, 马宏昊, 沈兆武. 炸药覆盖层对爆炸焊接影响的数值模拟[J]. 焊接学报, 2023, 44(1): 40-48. DOI: 10.12073/j.hjxb.20220121002
MIAO Guanghong, HU Yu, AI Jiuying, QI Junxiang, MA Honghao, SHEN Zhaowu. Numerical simulation research on the effect of explosive covering on explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 40-48. DOI: 10.12073/j.hjxb.20220121002
Citation: MIAO Guanghong, HU Yu, AI Jiuying, QI Junxiang, MA Honghao, SHEN Zhaowu. Numerical simulation research on the effect of explosive covering on explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 40-48. DOI: 10.12073/j.hjxb.20220121002

炸药覆盖层对爆炸焊接影响的数值模拟

基金项目: 国家自然科学基金(11902003, 51874267);安徽省高校自然科学基金重点项目(KJ2017A089);高校优秀青年骨干人才国外访学研修项目(gxgwfx2019017).
详细信息
    作者简介:

    缪广红,1985年出生,博士,副教授,硕士生导师;主要从事含能材料、爆炸复合及爆炸安全等项目研究. Email: miaogh@mail.ustc.edu.cn

  • 中图分类号: TG 456.6

Numerical simulation research on the effect of explosive covering on explosive welding

  • 摘要: 为探究炸药覆盖层厚度对爆炸焊接的影响,采用ANSYS/LS-DYNA软件并结合SPH-FEM耦合算法,对不同覆层厚度下的爆炸焊接试验进行三维数值模拟. 文中采用厚度为 20 mm 的Q235钢和厚度为 2.5 mm 的304不锈钢作为基板和复板. 根据相应的材料参数理论计算了焊接过程中的动态参数,并以此建立爆炸焊接窗口. 仿真结果表明,与无覆盖层爆炸焊接相比,覆盖层厚度为15 mm、 30 mm 和45 mm 时冲击速度分别提高了39.3%, 58.1%和68.8%,碰撞压力分别增大了41.0%, 65.6% 和80.6%. 仿真结果与试验结果基本一致. 利用SPH法进行二维数值模拟,得到了装配炸药覆盖层时复板与基板的复合界面. 仿真结果表明,复合板在覆层厚度为15 mm时具有良好的波形复合界面,且界面波形与试验金相分析结果较为吻合.
    Abstract: In order to research the influence of covering thickness on explosive welding, the explosive welding experiments under different covering thickness are simulated in three dimensions by using ANSYS/LS-DYNA software and combining the SPH-FEM coupling algorithm. The Q235 steel with the thickness of 20 mm and the 304 stainless steel with the thickness of 2.5 mm are used as the base plate and the flyer plate in the present study. The dynamic parameters in the welding process are calculated according to the corresponding material parameter theory, and an explosive welding window is established. The simulation results show that, compared to the explosive welding without covering, the impact velocity is increased by 39.3%, 58.1% and 68.8% respectively when the covering thickness is 15 mm, 30 mm and 45 mm. And the collision pressure is increased by 41.0%, 65.6% and 80.6% respectively. The simulation results approximately agree with the experimental results. The SPH method is used to carry out two-dimensional numerical simulation to obtain the composite interface between flyer plate and base plate when assembling covering. The simulation results show that the composite plate has a good waveform composite interface when the covering thickness is 15 mm, and the interface waveform is more consistent with the results of the metallographic analysis in the experiment.
  • 图  1   计算模型示意图

    Figure  1.   Schematic diagram of calculation model

    图  2   爆炸焊接窗口

    Figure  2.   Explosive welding window.

    图  3   结合面上的一对特征单元

    Figure  3.   A pair of element on the joint surface.

    图  4   不同覆层厚度下特征单元A与B的速度-时间历程

    Figure  4.   Velocity-time history of element A and B under different covering thicknesses. (a) Colloidal water covering thickness 0 mm; (b) Colloidal water covering thickness 15 mm; (c) Colloidal water covering thickness 30 mm; (d) Colloidal water covering thickness 40 mm

    图  5   碰撞速度随覆层厚度变化的增益曲线

    Figure  5.   Gain curve of impact velocity with variation of covering thickness

    图  6   基板与覆板的碰撞角β

    Figure  6.   Collision angle β of base plate and flyer plate

    图  7   覆层厚度15 mm时复板的压力云图

    Figure  7.   The pressure cloud diagram of the flyer plate when covering thickness is 15 mm. (a) 4.99 μs; (b) 18.99 μs; (c) 25.96 μs; (d) 46.99 μs; (e) 74.99 μs; (f) 90.98 μs

    图  8   15 mm覆层下复板界面结合处的三个特征单元

    Figure  8.   Three element at the junction of the flyer plate under the 15 mm covering

    图  9   三个特征单元的碰撞压力-时间分布图

    Figure  9.   Collision pressure-time distribution diagram of three element

    图  10   不同覆层厚度下特征单元A (元素17911)的碰撞压力分布

    Figure  10.   Impact pressure distribution of element A (element 17911) under different covering thicknesses. (a) Covering thickness 0 mm; (b) Covering thickness 15 mm; (c) Covering thickness 30 mm; (d) Covering thickness 45 mm

    图  11   不同覆层厚度下的位移云图和位移-时间历程图

    Figure  11.   Displacement cloud diagram and displacement-time history diagram under different covering thickness. (a) covering thickness 0 mm; (b) covering thickness 15 mm; (c) covering thickness 30 mm; (d) covering thickness 45 mm

    图  12   覆层厚度15mm复合界面波形对比图

    Figure  12.   Waveform comparison diagram on the composite interface when the covering thickness is 15 mm. (a) metallographic analysis composite interface; (b) 2D simulation composite interface

    表  1   乳化炸药的JWL状态方程参数

    Table  1   JWL equation-of-state parameters of emulsion explosive

    炸药爆速
    D/(m∙s−1)
    炸药密度
    ρ/(g·cm−3)
    单位体积内能
    E0 /(kJ∙cm−3)
    材料常数1
    AJWL /GPa
    材料常数2
    BJWL/GPa
    材料常数3
    R1
    材料常数4
    R2
    材料常数5
    ω
    3 0271.013.323326.425.808 95.81.560.57
    下载: 导出CSV

    表  2   Q235钢与304不锈钢的Johnson-Cook材料模型参数

    Table  2   Parameters of Johnson-Cook mode1l of Q235 steel and SUS304 steel

    材料密度
    ρ/(g·cm−3)
    剪切模量
    G/GPa
    初始屈服
    强度A/GPa
    硬度常数
    B/GPa
    硬化指数
    n
    应变率强化
    参数c
    软化指数
    m
    室内温度
    Tr /K
    金属熔点
    Tm /K
    Q2357.8577.00.7920.510.260.0141.03294.01 493
    SUS3047.9324.00.7001.300.750.0210.90294.01 454
    下载: 导出CSV

    表  3   Q235钢与304不锈钢的Gruneisen状态方程参数

    Table  3   Gruneisen EOS parameters of Q235 steel and SUS304 steel

    材料体积声速
    C/(km·s−1)
    斜率系数
    S
    Gruneisen系数
    γ0
    体积修正系数
    a
    Q2356.01.492.170.46
    SUS3044.51.491.930.50
    下载: 导出CSV

    表  4   胶体水覆层的材料模型与状态方程参数

    Table  4   Model and EOS parameters of Colloidal water

    密度
    ρ/(g·cm−3)
    截止压力
    PC/Pa
    动态粘度系数
    MU/(10−4 N·s·m−2)
    体积声速
    C/(km·s−1)
    斜率
    系数S
    Gruneisen
    系数γ0
    0.998−10.08.6840.164 71.9210.35
    下载: 导出CSV

    表  5   Q235钢与304不锈钢的材料性能

    Table  5   The material properties of Q235 steel and SUS304 steel

    材料密度
    ρ/(g·cm−3)
    材料声速
    C0/(km·s−1)
    拉伸强度
    σb/GPa
    维氏硬度
    HV/GPa
    材料熔点
    Tm/℃
    热导率
    κ/(W·m−1·℃−1)
    Q2357.856.000.4051.301 49338
    SUS3047.934.500.5601.701 45422
    下载: 导出CSV

    表  6   不同覆层厚度下的炸药爆速计算值

    Table  6   Calculation value of explosive detonation velocity under different cladding thickness

    覆层厚度h/mm炸药爆速Vd/(m·s−1)
    02 950
    153 398
    303 530
    453 582
    下载: 导出CSV
  • [1]

    Fronczek D M, Wojewoda-Budka J, Chulist R, et al. Structural properties of Ti/Al clads manufactured by explosive welding and annealing[J]. Materials & Design, 2016, 91: 80 − 89.

    [2]

    Mahmood Y, Dai K D, Chen P W, et al. Experimental and Numerical Study on Microstructure and Mechanical Properties of Ti-6Al-4V/Al-1060 Explosive Welding[J]. Metals, 2019, 9(11): 1189. doi: 10.3390/met9111189

    [3]

    Ren B X, Tao G, Wen P, et al. Study on weldability window and interface morphology of steel tube and tungsten alloy rod welded by explosive welding[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105005. doi: 10.1016/j.ijrmhm.2019.105005

    [4]

    Liu K Y, Chen P W, Feng J R, et al. Fabrication and characterization of the Mo/CU bimetal with thick Mo layer and high interfacial strength[J]. International Journal of Refractory Metals and Hard Materials, 2021, 94: 105383. doi: 10.1016/j.ijrmhm.2020.105383

    [5]

    Akbari M S A A, Farhadi S P. Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel[J]. Materials & Design, 2009, 30(3): 459 − 468.

    [6]

    Gladkovsky S V, Kuteneva S V, Sergeev S N. Microstructure and mechanical properties of sandwich copper/steel composites produced by explosive welding[J]. Materials Characterization, 2019, 154: 294 − 304. doi: 10.1016/j.matchar.2019.06.008

    [7]

    Loureiro A, Mendes R, Ribeiro J B, et al. Effect of explosive mixture on quality of explosive welds of copper to aluminium[J]. Materials & Design, 2016, 95: 256 − 267.

    [8] 邢廷勇, 郑雁军, 崔立山, 等. 时效对爆炸焊接合成TiNi/TiNi合金阻尼行为的影响[J]. 中国有色金属学会学报, 2009, 19(6): 1470 − 1473. doi: 10.1016/S1003-6326(09)60053-4

    Xing Tingyong, Zheng Yanjun, Cui Lishan, et al. Influence of aging on damping behavior of TiNi/TiNi alloys synthesized by explosive welding[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(6): 1470 − 1473. doi: 10.1016/S1003-6326(09)60053-4

    [9] 吴晓明, 史长根, 房中行, 等. 有无夹层的钛铝爆炸焊接能量与界面特性的对比研究[J]. 材料与设计, 2021, 197: 109279.

    Wu Xiaoming, Shi Changgen, Fang Zhonghang, et al. Comparative study on welding energy and Interface characteristics of titanium aluminum explosive composites with and without interlayer[J]. Materials & Design, 2021, 197: 109279.

    [10]

    Mori D, Kasada R, Konishi S, et al. Underwater explosive welding of tungsten to reduced-activation ferritic steel F82H[J]. Fusion Engineering and Design, 2014, 89(7-8): 1086 − 1090. doi: 10.1016/j.fusengdes.2013.12.038

    [11]

    Liu W D, Liu K X, Chen Q Y, et al. Metallic glass coating on metals plate by adjusted explosive welding technique[J]. Applied Surface Science, 2009, 255(23): 9343 − 9347. doi: 10.1016/j.apsusc.2009.07.033

    [12]

    Sui G F, Li J S, Li H W, et al. Investigation on the explosive welding mechanism of corrosion-resisting aluminum and stainless steel tubes through finite element simulation and experiments[J]. International Journal of Minerals Metallurgy and Materials, 2012, 19(2): 151 − 158. doi: 10.1007/s12613-012-0531-4

    [13] 杨明, 马宏昊, 沈兆武, 等. 炸药覆层对不锈钢与钢爆炸焊接的影响研究[J]. 推进剂, 炸药, 烟火, 2019, 44(5): 609 − 616. doi: 10.1002/prep.201800160

    Yang Ming, Ma Hong-hao, Shen Zhao-wu,. et al. Study on the Effects of Explosive Covering on Explosive Welding of Stainless Steel to Steel[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(5): 609 − 616. doi: 10.1002/prep.201800160

    [14] 章冠人, 陈大年. 凝聚炸药起爆动力学[M]. 北京: 国防工业出版社, 1991.

    Zhang Guanren, Chen Danian. Condensed Explosive Detonation Dynamics[M]. Beijing: National Defense Industry Press, 1991.

    [15] 李裕春, 时党勇, 赵远. ANSYS11.0/LS-DYNA基础理论与工程实践[M]. 北京: 中国水利水电出版社, 2008.

    Li Yuchun, Shi Dangyong, Zhao Yuan. ANSYS11.0/LS-DYNA Basic Theory and Engineering Practice[M]. Beijing: China Water&Power Press, 2008.

    [16] 辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册[M]. 北京: 机械工业出版社, 2019.

    Xin Chunliang, Xue Zaiqing, Tu Jian, et al. Handbook of Common Material Parameters for Finite Element Analysis. Beijing: China Machine Press, 2019.

    [17]

    Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals applicable at high-strain rate[J]. Journal of Applied Physics, 1980, 51: 1498 − 1504. doi: 10.1063/1.327799

    [18]

    Liu G R, Liu M B. Smoothed Particle Hydrodynamics: A Meshfree Particle Method[M]. Changsha: Hunan University Press, 2005.

    [19]

    Walsh J, Shreffler R, Willig F. Limiting conditions for jet formation in high velocity collisions[J], Journal of Applied Physics, 1953, 24: 349359.

    [20] 郑远谋. 爆炸焊接和爆炸复合材料[M]. 北京: 国防工业出版社, 2017.

    Zheng Yuanmou. Explosive Welding and Explosive Composite Material[M]. Beijing: National Defense Industry Press, 2017.

    [21]

    Cowan G R, Bergmann O R, Holtzman A H. Mechanism of bond zone wave formation in explosion-clad metals[J]. Metallurgical and Materials Transactions B, 1971, 2: 3145 − 3155. doi: 10.1007/BF02814967

    [22]

    Shao B H, Zhang K. Explosive welding principle and its application[M]. Dalian: Dalian University of Science and Technology Press, 1987.

    [23] 缪广红, 马雷鸣, 吴建强, 等. 基复板间距对爆炸焊接质量影响的数值模拟[J]. 爆破, 2020, 37(2): 106 − 114. doi: 10.3963/j.issn.1001-487X.2020.02.019

    Miao Guanghong, Ma Leiming, Wu Jianqiang, et al. Numerical Simulation of Influence of Spacing between Base Plate and Flyer Plate on Welding Quality[J]. Blasting, 2020, 37(2): 106 − 114. doi: 10.3963/j.issn.1001-487X.2020.02.019

    [24]

    Zheng Z M, Yang Z S. Explosion Processing[M]. Beijing: National Defense Industry Press, 1981.

  • 期刊类型引用(8)

    1. 刘景城,叶晗哲,徐贵峰,娄昊,耿海滨. 不同基板热沉的铝合金电弧增材控形. 福州大学学报(自然科学版). 2024(01): 91-97 . 百度学术
    2. 邢松龄,李充,周海鹏,陈高强,史清宇. 铝合金型材搅拌摩擦焊无减薄接头组织和性能. 焊接学报. 2023(11): 124-128+136 . 本站查看
    3. 姜淑馨,李峰光. 丝材电弧增材制造技术的研究与应用. 铸造技术. 2022(05): 369-374 . 百度学术
    4. 石玗,朱珍文,张刚,李璐鹏. 金属电弧增材成形控制关键技术及研究现状. 材料导报. 2022(12): 135-142 . 百度学术
    5. 王轲,张元彬. ER5356铝合金双脉冲电弧增材制造成型工艺及组织研究. 热加工工艺. 2021(09): 20-23+28 . 百度学术
    6. 王磊磊,张占辉,徐得伟,薛家祥,曾敏. 双脉冲电弧增材制造数值模拟与晶粒细化机理. 焊接学报. 2019(04): 137-140+147+167 . 本站查看
    7. 张炼,张兆栋,刘黎明. 316不锈钢TIG电弧增材制造成形规律研究. 焊接技术. 2018(04): 10-14 . 百度学术
    8. 柏久阳,范成磊,杨雨晨,徐艳利,李瑞,林三宝,王计辉. 2219铝合金TIG填丝堆焊成形薄壁试样组织特征. 焊接学报. 2016(06): 124-128+134 . 本站查看

    其他类型引用(9)

图(12)  /  表(6)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  54
  • PDF下载量:  37
  • 被引次数: 17
出版历程
  • 收稿日期:  2022-01-20
  • 网络出版日期:  2023-01-12
  • 刊出日期:  2023-01-24

目录

    /

    返回文章
    返回