Microstructure and mechanical properties of aluminium alloy thin-wall parts in wire arc additive manufacturing hybrid interlayer high-speed friction
-
摘要: 为提高丝材电弧增材制造(wire arc additive manufacturing,WAAM)构件性能,提出了一种电弧增材制造复合层间高速摩擦(wire arc additive manufacturing hybrid interlayer high speed friction,WAAM-HSF)的方法. 采用直径1.2 mm的4047铝硅焊丝,使用WAAM-HSF方法进行薄壁构件制造,对比研究了WAAM和WAAM-HSF对铝合金薄壁构件的微观结构和力学特性的影响. 结果表明,WAAM和WAAM-HSF构件的微观结构中存在着大量的柱状树枝晶. 与WAAM相比,WAAM-HSF构件的微观结构明显细化. 同时,不同工艺的晶粒分布趋势一致,即晶粒直径在两个薄壁中从顶部到底部逐渐减小. 在相同区域,WAAM构件的晶粒尺寸大于WAAM-HSF构件. 通过破坏外延结晶的生长,达到细化晶粒的目的. 与WAAM相比,WAAM-HSF构件的平均断后伸长率减小了5%;但WAAM-HSF构件的平均显微硬度和平均抗拉强度则分别提高了9.96 HV和17 MPa.Abstract: A wire arc additive manufacturing hybrid interlayer high speed friction (WAAM-HSF) approach is proposed to improve the performance of wire arc additive manufacturing (WAAM) components. The effect of WAAM and WAAM-HSF on the microstructure and mechanical properties of thin-walled aluminium alloy components was investigated using 1.2 mm diameter 4047 Al-Si wire using the WAAM-HSF method. The results show that the microstructures of the WAAM and WAAM-HSF components contain a large number of columnar dendrites. Compared to WAAM, the microstructure of WAAM-HSF components is significantly finer. At the same time, the grain distribution tends to be the same for the different processes, i.e. the grain diameter decreases from the top to the bottom in both thin walls. Grain refinement is achieved by disrupting the growth of epitaxial crystals. Compared to WAAM, the average elongation at break of WAAM-HSF components is reduced by 5%, but the average microhardness and average tensile strength of WAAM-HSF components are increased by 9.96 HV and 17 MPa, respectively.
-
-
表 1 4047焊丝和2A12基板化学成分(质量分数,%)
Table 1 Chemical compositions of 4047 wire and 2A12 substrate
材料 Si Fe Cu Mg Mn Ni Zn Al 4047 11 ~ 13 ≤ 0.6 ≤ 0.3 ≤ 0.1 ≤ 0.15 ≤ 0.05 ≤ 0.20 余量 2A12 ≤ 0.50 0 ~ 0.5 3.8 ~ 4.9 1.2 ~ 1.8 0.30 ~ 0.9 ≤ 0.10 ≤ 0.30 余量 表 2 焊接工艺参数
Table 2 Welding process parameters
保护气体流量Q/(L·min−1) 焊丝伸出长度l/mm 送丝速度 v/(m·min−1) 沉积速度
vd/(mm·s−1)弧长L/mm 15 18 5 8.5 5 -
[1] Derekar K S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium[J]. Materials Science and Technology, 2018, 34(8): 895 − 916.
[2] Kai T, Wesling V. The current state of research of wire arc additive manufacturing (WAAM): A review[J]. Applied Sciences, 2021, 18(11): 8619.
[3] Guo Y, Han Q, Hu J, et al. Comparative study on wire-arc additive manufacturing and conventional casting of Al-Si alloys: Porosity, microstructure and mechanical property[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 475 − 485. doi: 10.1007/s40195-021-01314-1
[4] 柏久阳, 王计辉, 师建行等. TIG增材制造4043铝合金薄壁零件组织及力学性能[J]. 焊接, 2015(10): 23 − 26,68. doi: 10.3969/j.issn.1001-1382.2015.10.006 Bai Jiuyang, Wang Jihui, Shi Jianxing, et al. Microstructure and mechanical properties of 4043 aluminum alloy thin-walled parts manufactured by TIG additive manufacturing[J]. Welding & Joining, 2015(10): 23 − 26,68. doi: 10.3969/j.issn.1001-1382.2015.10.006
[5] 王磊磊, 张占辉, 徐得伟, 等. 双脉冲电弧增材制造数值模拟与晶粒细化机理[J]. 焊接学报, 2019, 40(4): 137 − 140,147. doi: 10.12073/j.hjxb.2019400114 Wang Leilei, Zhang Zhanhui, Xu Dewei, et al. Numerical simulation and grain refinement mechanism of double-pulse arc additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(4): 137 − 140,147. doi: 10.12073/j.hjxb.2019400114
[6] Todaro C J, Easton M A, Qiu D, et al. Grain refinement of stainless steel in ultrasound-assisted additive manufacturing[J]. Additive Manufacturing, 2020, 37: 101632.
[7] Jin P, Liu Y, Li F, et al. Realization of synergistic enhancement for fracture strength and ductility by adding TiC particles in wire and arc additive manufacturing 2219 aluminium alloy[J]. Composites Part B: Engineering, 2021, 219: 108921.
[8] Miao Q, Wu D, Chai D, et al. Comparative study of microstructure evaluation and mechanical properties of 4043 aluminum alloy fabricated by wire-based additive manufacturing[J]. Materials & Design, 2020, 186: 108205.
[9] Gu J, Ding J, Williams S W, et al. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy[J]. Materials Science and Engineering:A, 2016, 651(10): 18 − 26.
[10] 吕世雄, 崔庆龙, 黄永宪, 等. 厚板钛合金窄间隙TIG焊接头组织与性能[J]. 焊接学报, 2012, 33(8): 81 − 84,117. Lü Shixiong, Cui Qinglong, Huang Yongxian, et al. Microstructure and properties of narrow gap TIG welded joints of thick titanium alloys[J]. Transactions of the China Welding Institution, 2012, 33(8): 81 − 84,117.
[11] Zhao Y, Singaravelu A, Ma X, et al. Unveiling the deformation behavior and strengthening mechanisms of Al3BC/Al composites via in-situ micropillar compression[J]. Journal of Alloys and Compounds, 2020, 823: 153842.
[12] 许飞, 陈俐, 郭路云. 填充焊丝对6A02铝合金光纤激光焊接接头组织性能的影响[J]. 焊接学报, 2018, 39(8): 92 − 96. doi: 10.12073/j.hjxb.2018390208 Xu Fei, Chen Li, Guo Luyun. Influence of filler wire on the microstructure and properties of 6A02 aluminum alloy fiber laser welded joints[J]. Transactions of the China Welding Institution, 2018, 39(8): 92 − 96. doi: 10.12073/j.hjxb.2018390208