高级检索

冷喷涂对2219铝合金搅拌摩擦焊接头残余应力与力学性能的影响

祁志伟, 杨夏炜, 邹阳帆, 汤化伟, 李文亚

祁志伟, 杨夏炜, 邹阳帆, 汤化伟, 李文亚. 冷喷涂对2219铝合金搅拌摩擦焊接头残余应力与力学性能的影响[J]. 焊接学报, 2022, 43(6): 82-87. DOI: 10.12073/j.hjxb.20211231002
引用本文: 祁志伟, 杨夏炜, 邹阳帆, 汤化伟, 李文亚. 冷喷涂对2219铝合金搅拌摩擦焊接头残余应力与力学性能的影响[J]. 焊接学报, 2022, 43(6): 82-87. DOI: 10.12073/j.hjxb.20211231002
QI Zhiwei, YANG Xiawei, ZOU Yangfan, TANG Huawei, LI Wenya. Effect of cold spraying on residual stress and mechanical properties of friction stir welded 2219 aluminum alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 82-87. DOI: 10.12073/j.hjxb.20211231002
Citation: QI Zhiwei, YANG Xiawei, ZOU Yangfan, TANG Huawei, LI Wenya. Effect of cold spraying on residual stress and mechanical properties of friction stir welded 2219 aluminum alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 82-87. DOI: 10.12073/j.hjxb.20211231002

冷喷涂对2219铝合金搅拌摩擦焊接头残余应力与力学性能的影响

基金项目: 上海航天科技创新基金(SAST2020-048);凝固技术国家重点试验室自主研究课题(2021-TS-07,2021-TZ-01)
详细信息
    作者简介:

    祁志伟,硕士研究生;主要研究方向为搅拌摩擦焊与冷喷涂;Email: 2020261069@mail.nwpu.edu.cn

    通讯作者:

    杨夏炜,博士,副教授;Email: yangxiawei@nwpu.edu.cn.

  • 中图分类号: TG 174.4

Effect of cold spraying on residual stress and mechanical properties of friction stir welded 2219 aluminum alloy joint

  • 摘要: 为了改善铝合金搅拌摩擦焊接头残余应力与力学性能,在4 mm厚2219铝合金搅拌摩擦焊接头上表面进行冷喷涂试验,研究分析了冷喷涂前后接头残余应力与力学性能的变化. 结果表明,焊态接头纵向残余应力呈不对称“M”形分布,残余应力峰值位于前进侧靠轴肩附近;冷喷涂后,接头残余应力大幅度降低,残余应力峰值由186 MPa降低至43 MPa.涂层沉积厚度约200 μm,涂层与基体界面产生了较大的塑性变形,基体界面附近组织晶粒得以细化.由于冷喷涂过程的喷丸效应,接头上表面显微硬度平均提高了25 HV,作用深度约1 mm.接头拉伸性能也获得明显改善,抗拉强度提升6.3%,断后伸长率提升78.6%,焊态与冷喷涂态的拉伸试样均在接头前进侧的热影响区附近发生断裂,符合在低硬度区或弱结合面产生裂纹并扩展的弱区断裂的特征.
    Abstract: In order to improve the residual stress and mechanical properties of friction stir welded aluminum alloy joints, the cold spraying process was carried out on the upper surface of 4 mm thick friction stir welded 2219 aluminum alloy joint. The changes of residual stress and mechanical properties of the joint before and after cold spraying were studied. The results show that the longitudinal residual stress of the as-welded joint presents an asymmetric “M” shape distribution, and the peak of residual stress was located at the advancing side near the shoulder outer. After cold spraying, the residual stress of the joint was greatly reduced, and the peak of residual stress was reduced from 186 MPa to 43 MPa. The thickness of the coating is about 200 μm, and the large plastic deformation occurred at the interface between the coating and the substrate. What’s more, the grains near the interface are refined. Because of the shot peening effect during cold spraying, the microhardness of the upper surface of the joint was increased by 25 HV on average, and the affected depth was about 1 mm. The tensile properties of the joint were also significantly improved, with the tensile strength increased by 6.3% and the elongation increased by 78.6%. Both as-welded and coated tensile specimens fractured near the heat affected zone at the advancing side of the joint. It is consistent with the characteristics of fracture in the weak zone.
  • 图  1   接头表面冷喷涂示意图

    Figure  1.   Schematic of cold spraying on FSW joint surface

    图  2   冷喷涂路径及残余应力测量应变花位置示意图(mm)

    Figure  2.   Schematic of cold spraying path and layout of the rosettes for residual stress measurement

    图  3   冷喷涂前后接头宏观形貌

    Figure  3.   Macro-morphology of the joints before or after cold spraying. (a) as-welded joints; (b) coated joints

    图  4   冷喷涂后接头及涂层截面组织

    Figure  4.   micrographs of cold sprayed joint cross-section. (a) low magnification; (b) high magnification at interface

    图  5   冷喷涂前后接头表面残余应力分布

    Figure  5.   Residual stress distribution on FSW joint surface

    图  6   冷喷涂前后接头显微硬度分布

    Figure  6.   Microhardness distribution before and after cold spraying. (a) near the joint top surface;(b) along the joint thickness

    图  7   冷喷涂前后工程应力-应变曲线

    Figure  7.   Engineering stress–strain curve before and after cold spraying

    图  8   冷喷涂前后接头拉伸断裂位置

    Figure  8.   Location of fracture before and after cold spraying. (a) as-welded; (b) coated

    表  1   2219铝合金的化学成分(质量分数,%)

    Table  1   Chemical compositions of 2219 aluminum alloy

    SiFeCuMnMgZnTiVZrAl
    0.30.36.50.60.050.10.150.10.15余量
    下载: 导出CSV

    表  2   冷喷涂工艺参数

    Table  2   Cold spraying process parameters

    温度
    T/℃
    压力
    P/MPa
    喷涂距离
    d/mm
    喷涂速度v/(mm·s−1)送粉速度ν0/(g·min−1)
    5003305080
    下载: 导出CSV

    表  3   冷喷涂前后接头的拉伸性能

    Table  3   Tensile properties before and after cold spraying

    状态抗拉强度Rm/MPa断后伸长率A(%)
    焊态3163.5
    冷喷涂态3366.5
    下载: 导出CSV
  • [1]

    Zhang D K, Wang G Q, Wu A P, et al. Effects of post-weld heat treatment on microstructure, mechanical properties and the role of weld reinforcement in 2219 aluminum alloy TIG-welded joints[J]. Acta Metallurgica Sinica-English Letters, 2019, 32(6): 684 − 694. doi: 10.1007/s40195-018-00869-w

    [2] 从保强, 齐铂金, 周兴国, 等. 2219高强铝合金超快变换VPTIG焊缝组织和性能[J]. 焊接学报, 2010, 31(4): 85 − 88.

    Cong Baoqiang, Qi Bojin, Zhou Xingguo, et al. Microstructure and mechanical properties of ultrafast-convert VPTIG arc welding of 2219 high strength aluminum alloy[J]. Transactions of the China Welding Institution, 2010, 31(4): 85 − 88.

    [3]

    Niu L Q, Li X Y, Zhang L, et al. Correlation between microstructure and mechanical properties of 2219-T8 aluminum alloy joints by VPTIG welding[J]. Acta Metallurgica Sinica-English Letters, 2017, 30(5): 438 − 446. doi: 10.1007/s40195-016-0516-9

    [4]

    Kang Y, Zhan X, Qi C, et al. Grain growth and texture evolution of weld seam during solidification in laser beam deep penetration welding of 2219 aluminum alloy[J]. Materials Research Express, 2019, 6(11): 65e3.

    [5]

    Lin Y T, Wang M C, Zhang Y, et al. Investigation of microstructure evolution after post-weld heat treatment and cryogenic fracture toughness of the weld metal of AA2219 VPTIG joints[J]. Materials & Design, 2017, 113: 54 − 59.

    [6]

    Mastanaiah P, Sharma A, Reddy G M. Process parameters-weld bead geometry interactions and their influence on mechanical properties: A case of dissimilar aluminium alloy electron beam welds[J]. Defence Technology, 2018, 14(2): 137 − 150. doi: 10.1016/j.dt.2018.01.003

    [7] 贺地求, 赵志峰, 赖瑞林, 等. 2219-T87超声辅助搅拌摩擦焊接头组织与性能[J]. 湖南大学学报(自然科学版), 2018, 45(4): 41 − 47.

    He Diqiu, Zhao Zhifeng, Lai Ruilin, et al. Research on the microstructure and mechanical properties of ultrasonic assisted friction stir welding joints of 2219-T87 aluminum alloy[J]. Journal of Hunan University (Natural Sciences), 2018, 45(4): 41 − 47.

    [8] 孙转平, 杨新岐, 杜波, 等. 2219铝合金FSW焊缝摩擦塞补焊接头性能分析[J]. 焊接学报, 2019, 40(5): 143 − 147. doi: 10.12073/j.hjxb.2019400142

    Sun Zhuanping, Yang Xinqi, Du Bo, et al. Investigation on mechanical properties of friction plug welded joints for 2219 friction stir welds[J]. Transactions of the China Welding Institution, 2019, 40(5): 143 − 147. doi: 10.12073/j.hjxb.2019400142

    [9]

    Li X, Chen S, Yuan T, et al. Improving the properties of friction stir welded 2219-T87 aluminum alloy with GTA offset preheating[J]. Journal of Manufacturing Processes, 2020, 51: 10 − 18. doi: 10.1016/j.jmapro.2020.01.021

    [10] 王浩, 肖纳敏, 李惠曲, 等. 7050铝合金结构件热处理与冷成形过程残余应力演化规律的数值模拟[J]. 材料工程, 2021, 49(8): 72 − 80. doi: 10.11868/j.issn.1001-4381.2021.000242

    Wang Hao, Xiao Namin, Li Huiqu, et al. Modeling of residual stress evolution of 7050 aluminium alloy component during heat treatment and cold forming[J]. Journal of Materials Engineering, 2021, 49(8): 72 − 80. doi: 10.11868/j.issn.1001-4381.2021.000242

    [11] 唐鹏钧, 陈冰清, 闫泰起, 等. 热处理对增材制造AlSi10Mg合金组织性能及残余应力的影响[J]. 科技导报, 2021, 39(9): 36 − 47. doi: 10.3981/j.issn.1000-7857.2021.09.004

    Tang Pengjun, Chen Bingqing, Yan Taiqi, et al. Effects of heat treatment on microstructure, properties, and residual stress of additive manufactured AlSi10Mg alloy[J]. Science & Technology Review, 2021, 39(9): 36 − 47. doi: 10.3981/j.issn.1000-7857.2021.09.004

    [12] 张超, 卢庆华, 徐济进, 等. 大直缝焊管热时效与振动时效消应力工艺比较[J]. 焊接学报, 2007, 28(10): 97 − 100. doi: 10.3321/j.issn:0253-360x.2007.10.025

    Zhang Chao, Lu Qinghua, Xu Jijin, et al. Comparison of stress relief by PWHT and VSR in large-dimension straight welded pipe[J]. Transactions of the China Welding Institution, 2007, 28(10): 97 − 100. doi: 10.3321/j.issn:0253-360x.2007.10.025

    [13]

    Breuner C, Guth S, Gall E, et al. Influence of shot peening on the isothermal fatigue behavior of the gamma titanium aluminide Ti-48Al-2Cr-2Nb at 750 degrees C[J]. Metals, 2021, 11(7): 1083.

    [14]

    Li W Y, Zhang D D, Huang C J, et al. Modelling of impact behaviour of cold spray particles: review[J]. Surface Engineering, 2014, 30(5): 299 − 308. doi: 10.1179/1743294414Y.0000000268

    [15] 邹阳帆, 王非凡, 鄢东洋, 等. 冷喷涂改善2219铝合金熔焊接头残余应力新方法[J]. 表面技术, 2019, 48(12): 240 − 246.

    Zou Yangfan, Wang Feifan, Yan Dongyang, et al. New Method to modify the residual stress in variable polarity TIG Welded 2219 aluminum alloy joints by cold spraying[J]. Surface Technology, 2019, 48(12): 240 − 246.

    [16] 王非凡, 鄢东洋, 邹阳帆, 等. 冷喷涂工艺参数对2219铝合金VPTIG接头残余应力分布的影响[J]. 热加工工艺, 2021, 50: 27 − 30, 34.

    Wang Feifan, Yan Dongyang, Zou Yangfan, et al. Influence of cold spraying process parameters on residual stress distribution of 2219 aluminum alloy VPTIG joint[J]. Hot Working Technology, 2021, 50: 27 − 30, 34.

    [17]

    Li N, Li W Y, Yang X W, et al. An investigation into the mechanism for enhanced mechanical properties in friction stir welded AA2024-T3 joints coated with cold spraying[J]. Applied Surface Science, 2018, 439: 623 − 631. doi: 10.1016/j.apsusc.2018.01.049

    [18]

    Li W Y, Jiang R R, Huang C J, et al. Effect of cold sprayed Al coating on mechanical property and corrosion behavior of friction stir welded AA2024-T351 joint[J]. Materials & Design, 2015, 65: 757 − 761.

    [19] 李亭, 史清宇, 李红克, 等. 铝合金搅拌摩擦焊接头残余应力分布[J]. 焊接学报, 2007, 28(6): 105 − 108. doi: 10.3321/j.issn:0253-360X.2007.06.027

    Li Ting, Shi Qingyu, Li Hongke, et al. Residual stresses for friction stir welded Al sheets[J]. Transactions of the China Welding Institution, 2007, 28(6): 105 − 108. doi: 10.3321/j.issn:0253-360X.2007.06.027

    [20]

    Xu W, Liu J, Zhu H. Analysis of residual stresses in thick aluminum friction stir welded butt joints[J]. Materials & Design, 2011, 32(4): 2000 − 2005.

    [21]

    Liu X C, Zhang H W, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel[J]. Science, 2013, 342(6156): 337 − 340. doi: 10.1126/science.1242578

    [22]

    Deng Jialun, Zhu Hao, Jiang Yue, et al. Evolution of residual stress field in 6N01 aluminum alloy friction stir welding joint[J]. China Welding, 2018, 27(4): 18 − 26.

    [23]

    Lu Xiaohong, Sun Xundong, Sun Shixuan, et al. Numerical simulation of thermal field of FSW 2219 aluminum alloy thick plate[J]. China Welding, 2021, 30(4): 1 − 8.

    [24]

    Li W Y, Li N, Yang X W, et al. Impact of cold spraying on microstructure and mechanical properties of optimized friction stir welded AA2024-T3 joint[J]. Materials Science and Engineering A, 2017, 702: 73 − 80. doi: 10.1016/j.msea.2017.07.003

    [25] 孙渊, 张栋, 午丽娟, 等. 材料残余应力对硬度测试影响程度的分析[J]. 华东理工大学学报(自然科学版), 2012, 38(5): 652 − 656.

    Sun Yuan, Zhang Dong, Wu Lijuan, et al. Influence of residual stress on indentation hardness[J]. Journal of East China University of Science and Technoloy (Natural Science Edition), 2012, 38(5): 652 − 656.

    [26]

    Kang J, Li J C, Feng Z C, et al. Investigation on mechanical and stress corrosion cracking properties of weakness zone in friction stir welded 2219-T8 Al alloy[J]. Acta Metallurgica Sinica, 2016, 52(1): 60 − 70.

图(8)  /  表(3)
计量
  • 文章访问数:  313
  • HTML全文浏览量:  11
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30
  • 网络出版日期:  2022-05-27
  • 刊出日期:  2022-07-07

目录

    /

    返回文章
    返回