高级检索

V4Cr4Ti合金和RAFM钢的热等静压扩散连接及其界面特性

张启航, 李佳霖, 谌继明, 王长浩, 杨波, 张弛

张启航, 李佳霖, 谌继明, 王长浩, 杨波, 张弛. V4Cr4Ti合金和RAFM钢的热等静压扩散连接及其界面特性[J]. 焊接学报, 2022, 43(7): 57-62. DOI: 10.12073/j.hjxb.20211119002
引用本文: 张启航, 李佳霖, 谌继明, 王长浩, 杨波, 张弛. V4Cr4Ti合金和RAFM钢的热等静压扩散连接及其界面特性[J]. 焊接学报, 2022, 43(7): 57-62. DOI: 10.12073/j.hjxb.20211119002
ZHANG Qihang, LI Jialin, CHEN Jiming, WANG Changhao, YANG Bo, ZHANG Chi. Hot isostatic pressing diffusion bonding of V4Cr4Ti alloy/RAFM steel and interface properties of the joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 57-62. DOI: 10.12073/j.hjxb.20211119002
Citation: ZHANG Qihang, LI Jialin, CHEN Jiming, WANG Changhao, YANG Bo, ZHANG Chi. Hot isostatic pressing diffusion bonding of V4Cr4Ti alloy/RAFM steel and interface properties of the joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 57-62. DOI: 10.12073/j.hjxb.20211119002

V4Cr4Ti合金和RAFM钢的热等静压扩散连接及其界面特性

基金项目: 国家自然科学基金面上项目(11975092); 西物创新行动项目(202001XWCXRZ001).
详细信息
    作者简介:

    张启航,硕士研究生;主要从事金属热等静压扩散焊接方面研究;Email: zhangqihang@swip.ac.cn

    通讯作者:

    谌继明,博士,研究员;Email:chenjm@swip.ac.cn.

  • 中图分类号: TG 456.9

Hot isostatic pressing diffusion bonding of V4Cr4Ti alloy/RAFM steel and interface properties of the joints

  • 摘要: 低活化铁素体/马氏体(reduced activation ferritic/martensitic,RAFM)钢及钒合金被认为是未来核聚变反应堆第一壁的候选结构材料,性能各有优劣,可满足近中期应用要求. 采用热等静压技术在温度800 ℃、等静压压强150 MPa和保温时间2 h下实现V4Cr4Ti合金和CLF-1钢的固态扩散连接,对其界面微观组织、元素扩散特征以及抗剪强度进行了分析. 结果表明,CLF-1钢在距离连接界面120 μm区域内出现脱碳层,而V4Cr4Ti合金侧存在宽度约1.5 μm的高硬脆碳化物层;V4Cr4Ti合金/CLF-1钢连接界面无缺陷,接头室温抗剪强度最高达238 MPa. 断口分析表明,断裂发生于靠近V4Cr4Ti合金侧的高硬脆碳化物层,断口表现出整体韧性,局部脆性断裂的特征.
    Abstract: Reduced activation ferritic/martensitic (RAFM) steels and vanadium alloys are considered as candidate structural materials for the first wall of fusion reactors in the future, with their own advantages and disadvantages, which can meet the requirements of short-term and medium-term applications. In this study, hot isostatic pressing technology was used to connect V4Cr4Ti alloy and RAFM steel CLF-1 at the hot isostatic pressure parameters of temperature 800 ℃, isostatic pressure 150 MPa and holding time 2 h, and the interface microstructure, element diffusion characteristics and shear mechanical properties were analyzed. The results show that a decarburized layer is present in the CLF-1 steel within a distance of 120 μm from the connection interface, while a high-hard brittle carbide layer with a width of about 1.5 μm exists on the V4Cr4Ti alloy side. The V4Cr4Ti alloy/CLF-1 steel connection interface has no defects, and the room temperature shear strength of the joint is up to 238 MPa. The fracture analysis results show that the fracture occurs in the high-hard brittle carbide layer at the vanadium alloy side, and the fracture shows the characteristics of overall toughness and local brittle fracture.
  • 图  1   材料装配及剪切试样示意图

    Figure  1.   Schematic diagram of material assembly and shear sample. (a) material assembly; (b) shear sample (mm)

    图  2   V4Cr4Ti(V)/CLF-1钢界面微观组织形貌

    Figure  2.   Microstructure morphology of V4Cr4Ti(V)/CLF-1 steel interface. (a) V4Cr4Ti/CLF-1 steel; (b) V/CLF-1 steel

    图  3   V4Cr4Ti/CLF-1钢界面EBSD分析

    Figure  3.   EBSD of V4Cr4Ti/CLF-1 steel interface

    图  4   V4Cr4Ti/CLF-1界面EPMA分析

    Figure  4.   EPMA analysis of V4Cr4Ti/CLF-1 steel interface. (a) EPMA observation area; (b) EPMA composition distribution of Fe, V, C ,Ti elements

    图  5   V4Cr4Ti/CLF-1钢界面区的硬度

    Figure  5.   Hardness of V4Cr4Ti/CLF-1 steel interfacial area

    图  6   V4Cr4Ti/CLF-1钢接头的室温剪切应力-应变曲线

    Figure  6.   Stress-strain curves of V4Cr4Ti/CLF-1 steel joint tested at room temperature

    图  7   V4Cr4Ti/CLF-1钢连接界面剪切断口形貌

    Figure  7.   Fracto-graphic results of the shear test samples from V4Cr4Ti/CLF-1 steel joint. (a) CLF-1 steel side at low magnification; (b) CLF-1 steel side at high magnification; (c) element distribution of CLF-1 steel side surface; (d) V4Cr4Ti alloy side at low magnification; (e) V4Cr4Ti alloy side at high magnification; (f) element distribution of CLF-1 steel side surface at a bump

    表  1   V4Cr4Ti合金的化学成分(质量分数,%)

    Table  1   Chemical compositions of the V4Cr4Ti alloy

    CrTiSiOCAlV
    3.813.920.0590.0270.0130.010余量
    下载: 导出CSV

    表  2   CLF-1钢的化学成分(质量分数,%)

    Table  2   Chemical compositions of the CLF-1 steel

    CrWMnVTaCFe
    8.621.490.5700.2800.1400.092余量
    下载: 导出CSV

    表  3   纯钒的化学成分(质量分数,%)

    Table  3   Chemical compositions of the pure vanadium

    OAlNFeMoCHV
    0.0400.0160.0140.0120.00820.0050.004余量
    下载: 导出CSV

    表  4   热等静压工艺参数

    Table  4   Parameters of hot isostatic pressing process

    温度
    T/℃
    等静压压强
    P/MPa
    保温时间
    t/h
    降温速率
    R/(℃·min−1)
    8001502≤ 6
    下载: 导出CSV
  • [1] 徐杰, 李荣斌. 核聚变堆用结构材料的研究进展[J]. 有色金属材料与工程, 2020, 41(6): 41 − 47.

    Xu Jie, Li Rongbin. Research progress of structural materials for nuclear fusion reactors[J]. Nonferrous Metal Materials and Engineering, 2020, 41(6): 41 − 47.

    [2]

    Tan L, Katoh Y, Tavassoli A A F, et al. Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service[J]. Journal of Nuclear Materials, 2016, 479: 515 − 523. doi: 10.1016/j.jnucmat.2016.07.054

    [3]

    Mao C L, Liu C X, Yu L M, et al. Mechanical properties and tensile deformation behavior of a reduced activated RAFM-steel at elevated temperatures[J]. Materials Science and Engineering A, 2018, 725: 283 − 289. doi: 10.1016/j.msea.2018.03.119

    [4]

    Votinov S N, Solonin M I, Kazennov Y I, et al. Prospects and problems using vanadium alloys as a structural material of the first wall and blanket of fusion reactors[J]. Journal of Nuclear Materials, 1996, 233: 370 − 375.

    [5]

    Chen J M, Chernov V M, Kurtz R J, et al. Overview of the vanadium alloy researches for fusion reactors[J]. Journal of Nuclear Materials, 2011, 417(1-3): 289 − 294. doi: 10.1016/j.jnucmat.2011.02.015

    [6]

    Smith D L, Chung H M, Loomis B A, et al. Development of vanadium-base alloys for fusion first-wall blanket applications[J]. Fusion Engineering and Design, 1995, 29: 399 − 410. doi: 10.1016/0920-3796(95)80046-Z

    [7]

    Diana B, Alexey S, Boris K, et al. Joining of tungsten with low-activation ferritic-martensitic steel and vanadium alloys for demo reactor[J]. Nuclear Materials and Energy, 2018, 15: 135 − 142. doi: 10.1016/j.nme.2018.03.010

    [8]

    Aktaa J, Basuki W W, Weber, T, et al. Manufacturing and joining technologies for helium cooled divertors[J]. Fusion Engineering and Design, 2014, 89(7-8): 913 − 920. doi: 10.1016/j.fusengdes.2014.01.028

    [9]

    Wang Y R, Teng W H, Yu Y. Electron beam braze-welding of vanadium alloy to stainless with electroplated Cu/Ag coatings[J]. China Welding, 2016, 25(3): 9 − 15.

    [10]

    Basuki W W, Aktaa J. Process optimization for diffusion bonding of tungsten with EUROFER97 using a vanadium interlayer[J]. Journal of Nuclear Materials, 2015, 459: 217 − 224. doi: 10.1016/j.jnucmat.2015.01.033

    [11] 李萍, 李翰林, 温为舒, 等. 低活化马氏体钢真空扩散焊接头力学性能[J]. 焊接学报, 2019, 40(3): 21 − 24.

    Li Ping, Li Hanlin, Wen Weishu, et al. Mechanical properties of vacuum diffusion welded joints of low activation martensitic steel[J]. Transactions of the China Welding Institution, 2019, 40(3): 21 − 24.

    [12] 陈帅, 王玥, 杨健, 等. V/Nb复合中间层热等静压扩散连接钢/钨接头的组织与性能[J]. 焊接学报, 2020, 41(11): 47 − 53. doi: 10.12073/j.hjxb.20200118001

    Chen Shuai, Wang Yue, Yang Jian, et al. Microstructure and properties of hot isostatic pressing diffusion bonding steel/tungsten joint with V/Nb composite interlayer[J]. Transactions of the China Welding Institution, 2020, 41(11): 47 − 53. doi: 10.12073/j.hjxb.20200118001

    [13] 冷邦义, 鲜晓斌, 谢东华, 等. 热等静压温度对V-4Cr-4Ti/HR2钢连接界面及性能的影响[J]. 粉末冶金技术, 2007, 25(6): 440 − 442, 446.

    Leng Bangyi, Xian Xiaobin, Xie Donghua, et al. Influences of hot isostatic pressing temperature on interface characteristic and mechanical properties of V-4Cr-4Ti/HR2 joints[J]. Powder Metallurgy Technology, 2007, 25(6): 440 − 442, 446.

    [14]

    Fu H Y, Chen J M, Zheng P F, et al. Fabrication using electron beam melting of a V-4Cr-4Ti alloy and its thermo-mechanical strengthening study[J]. Journal of Nuclear Materials, 2013, 442(1-3): S336 − S340. doi: 10.1016/j.jnucmat.2013.01.337

    [15] 付海英, 王平怀, 谌继明. CLF-1低活化铁素体/马氏体钢的热处理工艺[J]. 机械工程材料, 2010, 34(1): 28 − 32, 37.

    Fu Haiying, Wang Pinghuai, Chen Jiming. Heat treatment process for CLF-1 reduced activation ferritic/martensitic steel[J]. Materials for Mechanical Engineering, 2010, 34(1): 28 − 32, 37.

    [16]

    Chen J M, Muroga T, Nagasaka T, et al. The recovery and recrystallization of cold rolled V-W-Ti alloys[J]. Journal of Nuclear Materials, 2003, 322: 73 − 79. doi: 10.1016/S0022-3115(03)00317-9

图(7)  /  表(4)
计量
  • 文章访问数:  513
  • HTML全文浏览量:  57
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 网络出版日期:  2022-04-17
  • 刊出日期:  2022-07-24

目录

    /

    返回文章
    返回