Effect of wire feed rate on microstructure and properties of laser welded Ti-3Al-6Mo-2Fe-2Zr joints with filler wire
-
摘要: 采用Ti-6Al-4V(TC4)焊丝对2 mm厚的Ti-3Al-6Mo-2Fe-2Zr钛合金进行激光填丝焊接,利用光学显微镜、扫描电子显微镜、X射线能谱仪等分析测试方法研究了送丝速度对接头显微组织和力学性能的影响. 结果表明,由于从熔合线至母材受到焊接热作用逐渐递减,热影响区组织依次为单一β相、基体β相 + 初生αp相、基体β相 + 初生αp相 + 少量次生αs相. 焊缝中有针状α'相生成,且分布不均匀. 随着送丝速度的增加,针状α'相的数量增加,尺寸增大. 激光填丝焊接头的抗拉强度及断后伸长率均低于母材,随送丝速度的增加,接头抗拉强度上升,断后伸长率下降.其原因在于TC4焊丝的加入,促使针状α'相在焊缝中析出,送丝速度加快,造成焊缝中钼当量[Mo]eq降低,析出的针状α'相数量进一步增多,尺寸增大. 针状α'相的析出提高了焊缝强度,当送丝速度大于1.0 m/min时,接头的断裂位置为热影响区.Abstract: The Ti-6Al-4V(TC4) filler wire was used to join 2 mm thick Ti-3Al-6Mo-2Fe-2Zr titanium alloy during laser welding process. Investigations concerning the influence of wire feeding rate on microstructure and tensile properties were conducted on laser welded Ti-3Al-6Mo-2Fe-2Zr joints with filler wire by optical microscope, scanning electron microscope, and X ray energy spectrometer and other analytical testing methods. The results show that, due to the decreasing heat effect from fusion line to base metal, the microstructure of the heat affected zone is divided as follows: single β region, primary α + matrix β region, and primary α + retained secondary α + matrix β region. Acicular α' phase is formed in the fusion zone, and the distribution is not uniform. As the wire feed speed increases, the number and size of acicular α' phase increases. The tensile strength and elongation of laser welded joints with filler wire are lower than those of the base metal. With the increase of wire feeding rate, the tensile strength of the joint increases and the elongation decreases. The reason is attributed to that, as the wire feeding rate increased, the [Mo]eq in the fusion zone decreased correspondingly, which led to the increment in the number and size of α' phase. When the wire feeding rate was higher than 1.0 m/min, the fracture location changed from fusion zone to heat affected zone because of the strengthening effects of α' phase.
-
Keywords:
- laser welding with filler wire /
- β titanium alloy /
- microstructure /
- tensile property
-
-
图 6 焊缝微观组织
Figure 6. Microstructure of weld. (a) F1 weld (vf = 1.0 m/min, low magnification); (b) F2 weld (vf = 1.5 m/min, low magnification); (c) F3 weld (vf = 2.0 m/min, low magnification); (d) F1 weld (vf = 1.0 m/min, high magnification); (e) F2 weld (vf = 1.5 m/min, high magnification); (f) F3 weld(vf = 2.0 m/min, high magnification)
表 1 Ti-3Al-6Mo-2Fe-2Zr和TC4焊丝化学成分(质量分数,%)
Table 1 Chemical compositions of Ti-3Al-6Mo-2Fe-2Zr and TC4 filler wire
材料 Ti Al Fe Zr Mo V Ti-3Al-6Mo-2Fe-2Zr 83.97 3.31 2.89 2.12 7.71 — TC4 89.642 6.24 0.048 — — 4.07 表 2 焊接工艺参数
Table 2 Welding process parameters
试样
编号送丝速度
vf /(m·min−1)焊接速度
v/(m·min−1)激光功率
P/W气体流量Q/(L·min−1) 正面 背面 F1 1.0 1.0 1 400 20 3 F2
F31.5
2.01.0
1.01 400
1 40020
203
3表 3 焊缝能谱分析
Table 3 Energy spectrum analysis for the welds
试样编号 原子分数a(%) 钼当量[Mo]eq(%) Al Ti V Fe Zr Mo F1 4.84 85.34 0.87 1.86 1.78 5.31 9.65 F2 4.85 86.25 1.42 1.53 1.52 4.43 8.50 F3 5.24 87.03 1.88 1.27 1.18 3.40 7.28 -
[1] 李娜, 杜随更, 王松林, 等. TiAl合金与GH3039高温合金的摩擦焊接[J]. 焊接学报, 2020, 41(6): 6 − 11. doi: 10.12073/j.hjxb.20190717003 Li Na, Du Suigeng, Wang Songlin, et al. Friction welding of Ti Al alloy and superalloy GH3039[J]. Transaction of China Welding Institution, 2020, 41(6): 6 − 11. doi: 10.12073/j.hjxb.20190717003
[2] 孟圣昊, 司昌健, 任逸群, 等. 中厚板TC4钛合金真空环境激光焊接特性[J]. 焊接学报, 2021, 42(8): 40 − 47. doi: 10.12073/j.hjxb.20201124001 Meng Shenghao, Si Changjian, Ren Yiqun, et al. Laser welding characteristics of TC4 titanium alloy in vacuum environment[J]. Transaction of China Welding Institution, 2021, 42(8): 40 − 47. doi: 10.12073/j.hjxb.20201124001
[3] 牛超楠, 宋晓国, 胡胜鹏, 等. 钎焊温度对TC4/Ti60接头组织及性能的影响[J]. 焊接学报, 2018, 39(6): 77 − 80. doi: 10.12073/j.hjxb.2018390153 Niu Chaonan, Song Xiaoguo, Hu Shengpeng, et al. Effect of brazing temperature on the interfacial microstructure and mechanical properties of TC4/Ti60 brazed joints[J]. Transaction of China Welding Institution, 2018, 39(6): 77 − 80. doi: 10.12073/j.hjxb.2018390153
[4] Akhtar Awais, Dong Honggang, Xia Yueqing, et al. Lap joining 5052 aluminum alloy to Ti6Al4V titanium alloy by GTAW process with Al Si12 filler wire[J]. China Welding, 2020, 29(3): 1 − 8.
[5] 张可召, 何超威, 戚宋歌, 等. 热处理对激光焊接β钛合金组织及性能的影响[J]. 电焊机, 2020, 39(6): 59 − 64. doi: 10.7512/j.issn.1001-2303.2020.12.13 Zhang Kezhao, He Chaowei, Qi Songge, et al. Influence of heat treatment on microstructure and properties of laser welded β titanium alloy[J]. Electric Welding Machine, 2020, 39(6): 59 − 64. doi: 10.7512/j.issn.1001-2303.2020.12.13
[6] Zhang L J, Pei J Y, Long J, et al. Effects of laser welding and post-weld heat treatment on microstructure and mechanical properties of aged Ti55531 alloy[J]. Materials, 2018, 11(10): 1907 − 1921. doi: 10.3390/ma11101907
[7] Sabol J C, Pasang T, Misiolek W Z, et al. Localized tensile strain distribution and metallurgy of electron beam welded Ti-5Al-5V-5Mo-3Cr titanium alloys[J]. Journal of Materials Processing Technology, 2012, 212(11): 2380 − 2385. doi: 10.1016/j.jmatprotec.2012.06.023
[8] Anis A L, Talari M K, Kishore Babu N, et al. Grain refinement of Ti-15V-3Cr-3Sn-3Al metastable β titanium alloy welds using boron-modified fillers[J]. Journal of Alloys and Compounds, 2018, 749: 320 − 328. doi: 10.1016/j.jallcom.2018.03.286
[9] 曹海涛, 张鹏, 杜云慧, 等. Mg-Gd-Y-Zr激光焊接工艺优化及高温力学性能[J]. 焊接学报, 2020, 41(10): 87 − 96. doi: 10.12073/j.hjxb.20200221001 Cao Haitao, Zhang Peng, Du Yunhui, et al. Optimization of Mg-Gd-Y-Zr laser welding process parameters and study on high temperature mechanical properties[J]. Transaction of China Welding Institution, 2020, 41(10): 87 − 96. doi: 10.12073/j.hjxb.20200221001
[10] 王磊, 许雪宗, 王克鸿, 等. 中厚板7A52铝合金光纤激光焊接接头组织与性能[J]. 焊接学报, 2020, 41(10): 28 − 31. doi: 10.12073/j.hjxb.20200518001 Wang Lei, Xu Xuezong, Wang Kehong, et al. Microstructures and mechanical properties of fiber laser beam welded 7A52 alloy joint[J]. Transaction of China Welding Institution, 2020, 41(10): 28 − 31. doi: 10.12073/j.hjxb.20200518001
[11] Shariff T, Cao X, Chromik R R, et al. Effect of joint gap on the quality of laser beam welded near-β Ti-5553 alloy with the addition of Ti-6Al-4V filler wire[J]. Journal of Materials Science, 2012, 47(2): 866 − 875. doi: 10.1007/s10853-011-5866-0
[12] Wan Mingpan, Wen Xin, Ma Rui, et al. Microstructural evolution and continuous cooling transformation diagram in Ti-1300 alloy under continuous cooling condition[J]. Rare Metal Materials and Engineering, 2019, 48: 97 − 103.
[13] 张平平, 王庆娟, 高颀, 等. 高强β钛合金研究和应用现状[J]. 热加工工艺, 2012, 41(14): 51 − 55. doi: 10.3969/j.issn.1001-3814.2012.14.014 Zhang Pingping, Wang Qingzhuan, Gao Qi, et al. Research and application of high-strength β Ti alloy[J]. Hot Working Technology, 2012, 41(14): 51 − 55. doi: 10.3969/j.issn.1001-3814.2012.14.014
[14] Hui Y, Li W, Li S, et al. Phase transformation mechanism and microstructure evolution of TC4 alloy during continuous cooling[J]. Physics of Metals and Metallography, 2020, 121(14): 1375 − 1381. doi: 10.1134/S0031918X20140185
[15] Xu W, Jun Ma, Luo Y, et al. Microstructure and high-temperature mechanical properties of laser beam welded TC4/TA15 dissimilar titanium alloy joints[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(1): 160 − 170. doi: 10.1016/S1003-6326(19)65188-5
[16] Li D, Hu S, Shen J, et al. Microstructure and mechanical properties of laser-welded joints of Ti-22Al-25Nb/TA15 dissimilar titanium alloys[J]. Journal of Materials Engineering and Performance, 2016, 25(5): 1880 − 1888. doi: 10.1007/s11665-016-2025-4
[17] Lei Z L, Dong Z J, Chen Y B, et al. Microstructure and mechanical properties of laser welded Ti–22Al–27Nb/TC4 dissimilar alloys[J]. Materials Science and Engineering:A, 2013, 559: 909 − 916. doi: 10.1016/j.msea.2012.09.057