Study on the wettability and the microstructure of SiO2-BN multiphase ceramics
-
摘要: 采用座滴法开展Ag-21Cu-4.5Ti合金钎料对SiO2-BN复相陶瓷润湿与铺展行为研究. 利用SEM、XRD分析润湿界面微观组织以及形成机理. 通过调控SiO2-BN复相陶瓷中BN含量,研究Ag-21Cu-4.5Ti/SiO2-BN复相陶瓷润湿体系的润湿模型. 结果表明,Ag-21Cu-4.5Ti/SiO2-BN复相陶瓷润湿体系的典型界面反应产物为TiN和TiB2,随着体系BN含量的增加,润湿性逐渐变好. 对SiO2-BN复相陶瓷与Nb进行钎焊试验,典型界面组织为SiO2-BN复相陶瓷/TiN + TiB2/Ti2Cu + (Ag,Cu)/(βTi,Nb)/Nb. 接头抗剪强度随着钎焊时间升高先增大后减小,当钎焊温度为880 ℃,保温时间10 min时,钎焊接头抗剪强度最高,到达39 MPa.Abstract: The wetting and spreading behavior of SiO2-BN multiphase ceramics by Ag-21Cu-4.5Ti alloy filler was studied using the base drop method. The microstructure and the formation mechanism of wetting interface were analyzed by SEM and XRD. The relationship among BN content and wetting and spreading behavior was established. The results showed that the typical interface reaction products of Ag-21Cu-4.5Ti/SiO2-BN were TiN and TiB2, and the wettability gradually improved with the increasing of BN content in the system. The SiO2-BN multiphase ceramics were brazed to the Nb. The typical interface structure was SiO2-BN multiphase ceramics/TiN + TiB2/Ti2Cu + (Ag,Cu)/(Ti,Nb)/Nb. The shear strength of the joint first increases and then decreases with the increasing of brazing temperature. When the brazing temperature was 880 ℃ and the holding time was 10min, the shear strength of the brazed joint was 39 MPa.
-
Keywords:
- wetting behavior /
- brazing /
- interface /
- process parameters /
- shear strength
-
-
图 10 保温时间对接头界面组织的影响
Figure 10. Effect of holding time on the microstructure of brazed joints. (a) 5 min; (b) 10 min; (c) 15 min; (d) reaction layer of 5 min; (e) reaction layer of 10 min; (f) reaction layer of 15 min; (g) diffusion zone of 5 min; (h) diffusion zone of 10 min; (i) diffusion zone of 15 min
表 1 图7中各反应相的成分(原子分数,%)
Table 1 Chemical compositions of each reactant in Fig. 7
位置 Ti Ag Cu O Nb N Si 可能相 A 58.71 4.36 6.64 8.03 21.11 1.14 TiN B 16.99 12.45 62.25 4.98 0.97 — 2.37 Ti2Cu, (Ag,Cu) C 6.01 82.71 10.75 0.42 — 0.11 富Ag相 D 2.38 3.89 89.51 0.83 3.01 — 0.38 富Cu相 E 19.19 25.47 29.46 0.14 17.39 — 1.37 (βTi,Nb) -
[1] Wen G, Wu G L, Lei T Q, et al. Co-enhanced SiO2-BN ceramics for high-temperature dielectric applications[J]. Journal of the European Ceramic Society, 2000, 20(12): 1923 − 1928. doi: 10.1016/S0955-2219(00)00107-2
[2] Kandi K K, Punugupati G, Pagidi M, et al. A novel gelcast SiO2-Si3N4-BN ceramic composites for radome applications[J]. Silicon, 2022: 1 − 14.
[3] Wang J, Wen G W, Meng Q C. Preparation of BN/SiO2 ceramics by PIP method[J]. Journal of Central South University of Technology, 2005, 12(1): 31 − 34. doi: 10.1007/s11771-005-0197-4
[4] 陈贵清, 韩杰才, 张宇民, 等. 高压气-固自蔓延高温合成h-BN-SiO2陶瓷材料的研究[J]. 无机材料学报, 1999, 14(3): 437 − 442. doi: 10.3321/j.issn:1000-324X.1999.03.019 Chen G Q, Han J C, Zhang Y M, et al. Investigation of high pressure gas-solid self propagating high temperature synthesis h-BN-SiO2 ceramics[J]. Journal of Inorganic Materials, 1999, 14(3): 437 − 442. doi: 10.3321/j.issn:1000-324X.1999.03.019
[5] Liu X, Yu C, Qu D, et al. Preparation of porous β-SiAlON ceramics using corn starch as pore-forming agent[J]. Journal of the Australian Ceramic Society, 2022, 58(2): 531 − 537. doi: 10.1007/s41779-022-00708-3
[6] 王颖, 夏永红, 杨振文, 等. Ti3SiC2陶瓷与TC4合金钎焊接头微观组织及性能[J]. 稀有金属材料与工程, 2019(9): 3041 − 3047. Wang Y, Xia Y H, Yang Z W, et al. Interfacial Microstructure and Properties of Brazed Joints of Ti3SiC2 Ceramic and TC4 Alloy[J]. Rare Metal Materials and Engineering, 2019(9): 3041 − 3047.
[7] 付伟, 宋晓国, 赵一璇, 等. Al2O3陶瓷与紫铜的间接钎焊[J]. 焊接学报, 2015(6): 27 − 30. Fu W, Song X G, Zhao Y X, et al. Indirect brazing alumina to copper[J]. Transactions of the China Welding Institution, 2015(6): 27 − 30.
[8] Yin X H, Zhou Y C. Direct diffusion bonding of Ti3SiC2 and Ti3AlC2[J]. Materials Research Bulletin, 2009, 44(6): 1379 − 1384. doi: 10.1016/j.materresbull.2008.12.002
[9] Yin X H, Zhou Y C. Diffusion bonding of Ti3AlC2 ceramic via a Si interlayer[J]. Journal of Materials Science, 2007, 42(17): 7081 − 7085. doi: 10.1007/s10853-006-1491-8
[10] Li J, Sheng G M, Huang L. Impulse pressuring diffusion bonding of TiC cermet to stainless steel using Ti/Nb interlayer[J]. Journal of Materials Engineering, 2017, 45(3): 54 − 59.
[11] 陈铮, 楼宏青, 李志章. Si3N4/Ti/Cu/Ni二次部分瞬间液相连接[J]. 材料研究学报, 1999, 13(3): 313 − 316. Chen Z, Lou H Q, Li Z Z. Double partial transient liquid phase bonding of Si3N4/Ti/Cu/Ni[J]. Chinese Journal of Materials Research, 1999, 13(3): 313 − 316.
[12] 史延利. C/C复合材料与TiAl合金自蔓延反应连接工艺及机理研究[D]. 哈尔滨工业大学, 2012. Shi Yanli. Research on process and mechanism of self-propagating reaction joining between C/C composites and TiAl alloy[D]. Harbin: Harbin Institute of Technology, 2012.
[13] 韩绍华, 薛丁琪. 感应加热辅助原位合成Ti3SiC2连接SiC陶瓷[J]. 焊接学报, 2018, 39(3): 61 − 66. doi: 10.12073/j.hjxb.2018390069 Han Z H, Ding D Q. Joining of SiC ceramics by induction heated combustion synthesis of Ti3SiC2[J]. Transactions of the China Welding Institution, 2018, 39(3): 61 − 66. doi: 10.12073/j.hjxb.2018390069
[14] Hua Z, Zhai H, Huang Z, et al. Argon-arc welding of Cu/Ti3AlC2 cermet[J]. Key Engineering Materials, 2008, 368-372(p2): 1001 − 1003.
[15] Cioffi F, Fernandez R, Gesto D, et al. Friction stir weld-ing of thick plates of aluminum alloy matrix composite with a high volume fraction of ceramic reinforcement[J]. Composites Part A Applied ence and Manufacturing, 2013, 54(24): 117 − 123.
[16] Rajan H, Dinaharan I, Ramabalan S, et al. Influence of friction stir processing on microstructure and properties of AA7075/TiB2 in situ composite[J]. Journal of Alloys Compounds, 2016, 657: 250 − 260. doi: 10.1016/j.jallcom.2015.10.108
[17] Zhang L X, Sun Z, Shi J M, et al. Controlling the intermetallics growth in the SiO2-BN/Invar brazed joint by vertical few-layer graphene[J]. Ceramics International, 2018, 44(16): 20012 − 20018. doi: 10.1016/j.ceramint.2018.07.271
[18] Ba J, Zheng X H, Ning R, et al. Brazing of SiO2-BN modified with in situ synthesized CNTs to Ti6Al4V alloy by TiZrNiCu brazing alloy[J]. Ceramics International, 2018, 44(9): 10210 − 10214. doi: 10.1016/j.ceramint.2018.03.018