高级检索

SiO2-BN复相陶瓷润湿性及其接头微观组织

杨景红, 刘甲坤, 付曦, 魏文庆, 叶超超, 刘永胜, 张丽霞

杨景红, 刘甲坤, 付曦, 魏文庆, 叶超超, 刘永胜, 张丽霞. SiO2-BN复相陶瓷润湿性及其接头微观组织[J]. 焊接学报, 2022, 43(10): 31-36. DOI: 10.12073/j.hjxb.20210908002
引用本文: 杨景红, 刘甲坤, 付曦, 魏文庆, 叶超超, 刘永胜, 张丽霞. SiO2-BN复相陶瓷润湿性及其接头微观组织[J]. 焊接学报, 2022, 43(10): 31-36. DOI: 10.12073/j.hjxb.20210908002
YANG Jinghong, LIU Jiakun, FU Xi, WEI Wenqing, YE Chaochao, LIU Yongsheng, ZHANG Lixia. Study on the wettability and the microstructure of SiO2-BN multiphase ceramics[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 31-36. DOI: 10.12073/j.hjxb.20210908002
Citation: YANG Jinghong, LIU Jiakun, FU Xi, WEI Wenqing, YE Chaochao, LIU Yongsheng, ZHANG Lixia. Study on the wettability and the microstructure of SiO2-BN multiphase ceramics[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 31-36. DOI: 10.12073/j.hjxb.20210908002

SiO2-BN复相陶瓷润湿性及其接头微观组织

基金项目: 国家自然科学基金资助项目(51905382);山东省自然科学基金项目(ZR2021QE218,ZR2019BEE060)
详细信息
    作者简介:

    杨景红,博士,讲师,博士研究生导师;主要从事异种材料连接;Email: hityjh89@126.com

    通讯作者:

    魏文庆,博士,副教授;Email: hitweiwenqing@wfu.edu.cn.

  • 中图分类号: TG 454

Study on the wettability and the microstructure of SiO2-BN multiphase ceramics

Funds: National Natural Science Foundation of China (51905382); Natural Science Foundation of Shandong Province(ZR2021QE218 ,ZR2019BEE060)
  • 摘要: 采用座滴法开展Ag-21Cu-4.5Ti合金钎料对SiO2-BN复相陶瓷润湿与铺展行为研究. 利用SEM、XRD分析润湿界面微观组织以及形成机理. 通过调控SiO2-BN复相陶瓷中BN含量,研究Ag-21Cu-4.5Ti/SiO2-BN复相陶瓷润湿体系的润湿模型. 结果表明,Ag-21Cu-4.5Ti/SiO2-BN复相陶瓷润湿体系的典型界面反应产物为TiN和TiB2,随着体系BN含量的增加,润湿性逐渐变好. 对SiO2-BN复相陶瓷与Nb进行钎焊试验,典型界面组织为SiO2-BN复相陶瓷/TiN + TiB2/Ti2Cu + (Ag,Cu)/(βTi,Nb)/Nb. 接头抗剪强度随着钎焊时间升高先增大后减小,当钎焊温度为880 ℃,保温时间10 min时,钎焊接头抗剪强度最高,到达39 MPa.
    Abstract: The wetting and spreading behavior of SiO2-BN multiphase ceramics by Ag-21Cu-4.5Ti alloy filler was studied using the base drop method. The microstructure and the formation mechanism of wetting interface were analyzed by SEM and XRD. The relationship among BN content and wetting and spreading behavior was established. The results showed that the typical interface reaction products of Ag-21Cu-4.5Ti/SiO2-BN were TiN and TiB2, and the wettability gradually improved with the increasing of BN content in the system. The SiO2-BN multiphase ceramics were brazed to the Nb. The typical interface structure was SiO2-BN multiphase ceramics/TiN + TiB2/Ti2Cu + (Ag,Cu)/(Ti,Nb)/Nb. The shear strength of the joint first increases and then decreases with the increasing of brazing temperature. When the brazing temperature was 880 ℃ and the holding time was 10min, the shear strength of the brazed joint was 39 MPa.
  • 图  1   试样及其装配图

    Figure  1.   Schematic diagram of assembly structure illustration. (a) wetting sample; (b) brazing sample

    图  2   AgCuTi/SiO2-BN体系接触角随着保温时间的变化曲线

    Figure  2.   Contact angle and temperature as a function of time

    图  3   SiO2-BN侧反应层线扫描

    Figure  3.   EDS line profiles across SiO2-BN reaction layer

    图  4   SiO2-BN侧反应层XRD分析结果

    Figure  4.   XRD profiles of SiO2-BN reaction layer

    图  5   铺展过程中典型液滴截面图

    Figure  5.   Drop profile images of the spreading process. (a) 20% BN; (b) 50% BN; (c) 80% BN

    图  6   润湿试样俯视图

    Figure  6.   Top-view images of the wetting system. (a) 20% BN; (b) 50% BN; (c) 80% BN

    图  7   SiO2-BN/Nb接头界面微观组织

    Figure  7.   Microstructure of SiO2-BN/Nb joint. (a) the whole joint; (b) ceramic side; (c) metal side

    图  8   SiO2-BN侧反应层 XRD 分析结果

    Figure  8.   XRD profiles of SiO2-BN reaction layer

    图  9   接头界面组织相关元素面扫描分析

    Figure  9.   EDS compositional maps of joints

    图  10   保温时间对接头界面组织的影响

    Figure  10.   Effect of holding time on the microstructure of brazed joints. (a) 5 min; (b) 10 min; (c) 15 min; (d) reaction layer of 5 min; (e) reaction layer of 10 min; (f) reaction layer of 15 min; (g) diffusion zone of 5 min; (h) diffusion zone of 10 min; (i) diffusion zone of 15 min

    图  11   保温时间对接头抗剪强度的影响

    Figure  11.   Effect of holding time on shear strength of brazed joints

    表  1   图7中各反应相的成分(原子分数,%)

    Table  1   Chemical compositions of each reactant in Fig. 7

    位置TiAgCuONbNSi可能相
    A58.714.366.648.0321.111.14TiN
    B16.9912.4562.254.980.972.37Ti2Cu, (Ag,Cu)
    C6.0182.7110.750.420.11富Ag相
    D2.383.8989.510.833.010.38富Cu相
    E19.1925.4729.460.1417.391.37(βTi,Nb)
    下载: 导出CSV
  • [1]

    Wen G, Wu G L, Lei T Q, et al. Co-enhanced SiO2-BN ceramics for high-temperature dielectric applications[J]. Journal of the European Ceramic Society, 2000, 20(12): 1923 − 1928. doi: 10.1016/S0955-2219(00)00107-2

    [2]

    Kandi K K, Punugupati G, Pagidi M, et al. A novel gelcast SiO2-Si3N4-BN ceramic composites for radome applications[J]. Silicon, 2022: 1 − 14.

    [3]

    Wang J, Wen G W, Meng Q C. Preparation of BN/SiO2 ceramics by PIP method[J]. Journal of Central South University of Technology, 2005, 12(1): 31 − 34. doi: 10.1007/s11771-005-0197-4

    [4] 陈贵清, 韩杰才, 张宇民, 等. 高压气-固自蔓延高温合成h-BN-SiO2陶瓷材料的研究[J]. 无机材料学报, 1999, 14(3): 437 − 442. doi: 10.3321/j.issn:1000-324X.1999.03.019

    Chen G Q, Han J C, Zhang Y M, et al. Investigation of high pressure gas-solid self propagating high temperature synthesis h-BN-SiO2 ceramics[J]. Journal of Inorganic Materials, 1999, 14(3): 437 − 442. doi: 10.3321/j.issn:1000-324X.1999.03.019

    [5]

    Liu X, Yu C, Qu D, et al. Preparation of porous β-SiAlON ceramics using corn starch as pore-forming agent[J]. Journal of the Australian Ceramic Society, 2022, 58(2): 531 − 537. doi: 10.1007/s41779-022-00708-3

    [6] 王颖, 夏永红, 杨振文, 等. Ti3SiC2陶瓷与TC4合金钎焊接头微观组织及性能[J]. 稀有金属材料与工程, 2019(9): 3041 − 3047.

    Wang Y, Xia Y H, Yang Z W, et al. Interfacial Microstructure and Properties of Brazed Joints of Ti3SiC2 Ceramic and TC4 Alloy[J]. Rare Metal Materials and Engineering, 2019(9): 3041 − 3047.

    [7] 付伟, 宋晓国, 赵一璇, 等. Al2O3陶瓷与紫铜的间接钎焊[J]. 焊接学报, 2015(6): 27 − 30.

    Fu W, Song X G, Zhao Y X, et al. Indirect brazing alumina to copper[J]. Transactions of the China Welding Institution, 2015(6): 27 − 30.

    [8]

    Yin X H, Zhou Y C. Direct diffusion bonding of Ti3SiC2 and Ti3AlC2[J]. Materials Research Bulletin, 2009, 44(6): 1379 − 1384. doi: 10.1016/j.materresbull.2008.12.002

    [9]

    Yin X H, Zhou Y C. Diffusion bonding of Ti3AlC2 ceramic via a Si interlayer[J]. Journal of Materials Science, 2007, 42(17): 7081 − 7085. doi: 10.1007/s10853-006-1491-8

    [10]

    Li J, Sheng G M, Huang L. Impulse pressuring diffusion bonding of TiC cermet to stainless steel using Ti/Nb interlayer[J]. Journal of Materials Engineering, 2017, 45(3): 54 − 59.

    [11] 陈铮, 楼宏青, 李志章. Si3N4/Ti/Cu/Ni二次部分瞬间液相连接[J]. 材料研究学报, 1999, 13(3): 313 − 316.

    Chen Z, Lou H Q, Li Z Z. Double partial transient liquid phase bonding of Si3N4/Ti/Cu/Ni[J]. Chinese Journal of Materials Research, 1999, 13(3): 313 − 316.

    [12] 史延利. C/C复合材料与TiAl合金自蔓延反应连接工艺及机理研究[D]. 哈尔滨工业大学, 2012.

    Shi Yanli. Research on process and mechanism of self-propagating reaction joining between C/C composites and TiAl alloy[D]. Harbin: Harbin Institute of Technology, 2012.

    [13] 韩绍华, 薛丁琪. 感应加热辅助原位合成Ti3SiC2连接SiC陶瓷[J]. 焊接学报, 2018, 39(3): 61 − 66. doi: 10.12073/j.hjxb.2018390069

    Han Z H, Ding D Q. Joining of SiC ceramics by induction heated combustion synthesis of Ti3SiC2[J]. Transactions of the China Welding Institution, 2018, 39(3): 61 − 66. doi: 10.12073/j.hjxb.2018390069

    [14]

    Hua Z, Zhai H, Huang Z, et al. Argon-arc welding of Cu/Ti3AlC2 cermet[J]. Key Engineering Materials, 2008, 368-372(p2): 1001 − 1003.

    [15]

    Cioffi F, Fernandez R, Gesto D, et al. Friction stir weld-ing of thick plates of aluminum alloy matrix composite with a high volume fraction of ceramic reinforcement[J]. Composites Part A Applied ence and Manufacturing, 2013, 54(24): 117 − 123.

    [16]

    Rajan H, Dinaharan I, Ramabalan S, et al. Influence of friction stir processing on microstructure and properties of AA7075/TiB2 in situ composite[J]. Journal of Alloys Compounds, 2016, 657: 250 − 260. doi: 10.1016/j.jallcom.2015.10.108

    [17]

    Zhang L X, Sun Z, Shi J M, et al. Controlling the intermetallics growth in the SiO2-BN/Invar brazed joint by vertical few-layer graphene[J]. Ceramics International, 2018, 44(16): 20012 − 20018. doi: 10.1016/j.ceramint.2018.07.271

    [18]

    Ba J, Zheng X H, Ning R, et al. Brazing of SiO2-BN modified with in situ synthesized CNTs to Ti6Al4V alloy by TiZrNiCu brazing alloy[J]. Ceramics International, 2018, 44(9): 10210 − 10214. doi: 10.1016/j.ceramint.2018.03.018

图(11)  /  表(1)
计量
  • 文章访问数:  447
  • HTML全文浏览量:  51
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-07
  • 网络出版日期:  2022-04-28
  • 刊出日期:  2022-10-30

目录

    /

    返回文章
    返回