高级检索

低活化钢双壁管的热等静压扩散连接

黄伶明, 王万景, 王纪超, 刘松林, 雷明准, 罗广南

黄伶明, 王万景, 王纪超, 刘松林, 雷明准, 罗广南. 低活化钢双壁管的热等静压扩散连接[J]. 焊接学报, 2022, 43(1): 92-97. DOI: 10.12073/j.hjxb.20210810001
引用本文: 黄伶明, 王万景, 王纪超, 刘松林, 雷明准, 罗广南. 低活化钢双壁管的热等静压扩散连接[J]. 焊接学报, 2022, 43(1): 92-97. DOI: 10.12073/j.hjxb.20210810001
HUANG Lingming, WANG Wanjing, WANG Jichao, LIU Songlin, LEI Mingzhun, LUO Guangnan. HIP diffusion bonding of reduced activation steel double wall tube[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 92-97. DOI: 10.12073/j.hjxb.20210810001
Citation: HUANG Lingming, WANG Wanjing, WANG Jichao, LIU Songlin, LEI Mingzhun, LUO Guangnan. HIP diffusion bonding of reduced activation steel double wall tube[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 92-97. DOI: 10.12073/j.hjxb.20210810001

低活化钢双壁管的热等静压扩散连接

基金项目: 国家重点研发磁约束聚变能发展研究专项(2017YFE0300604);中国科学院合肥研究院院长基金资助(YZJJ2021QN17)
详细信息
    作者简介:

    黄伶明,硕士;主要从事聚变堆包层材料制备工艺研究;Email: lingming.huang@ipp.ac.cn

    通讯作者:

    王万景,博士,副研究员;Email:wjwang@ipp.ac.cn.

  • 中图分类号: TG456

HIP diffusion bonding of reduced activation steel double wall tube

  • 摘要: 双壁管可控制裂纹扩展路径,防止裂纹沿管径向扩展,显著提高了管的使用安全性,被认为是聚变堆包层增殖区冷却管的理想选择.针对双壁管复合焊接难题,从钢/铜/钢和钢/镍/钢平板复合结构开展了工艺优化试验. 结果表明,热等静压温度高于1 100 ℃时,钢/铜/钢复合界面处发生晶界扩散,焊接接头室温抗拉强度达601 MPa,界面纳米压痕硬度1.37 GPa;钢/镍/钢复合界面处产生了更宽的元素固溶扩散,室温抗拉强度可达630 MPa,界面处纳米压痕硬度2.05 GPa.采用优化后的热等静压参数制备了连接质量良好的多折弯双壁冷却管原型件.
    Abstract: The double-wall tube can control the crack propagation path and prevent the crack from spreading along the tube diameter, which significantly improves the safety of the tube. Therefore, it is the ideal choice for the cooling tube in the breeding blanket zone of fusion reactor. The process optimization experiments of steel/copper/steel and steel/nickel/steel flat composite structures were carried out to solve the problem of double-wall tube. The results show that grain boundary diffusion occurs at steel/copper/steel composite interface when the hot isostatic pressing temperature is higher than 1 100 ℃. The room temperature tensile strength of the welded joint reaches 601 MPa and the interface nanoindentation hardness is 1.37 GPa. Wider solid solution diffusion of elements occurs at the steel/nickel/steel composite interface, the tensile strength at room temperature can reach 630 MPa, and the nanoindentation hardness at the interface is 2.05 GPa. Prototypes of multi-bending double-wall cooling pipes with good connection quality were achieved by using optimized hot isostatic pressing parameters.
  • 图  1   样品结构

    Figure  1.   Sample structure

    图  2   两种中间层镀层的成分分析

    Figure  2.   Compositions analysis of coatings of two interlayers. (a) copper after electroplating; (b) Ni after electroplating

    图  3   两种焊接界面的线扫描分析

    Figure  3.   Line scan analysis of two welding interface.(a) Cu interlayer welding interface;(b) Ni interlayer welding interface

    图  4   两种中间层的微观形貌

    Figure  4.   Microscopic morphology of two interlayers. (a) Cu interlayer; (b) Ni interlayer

    图  5   不同中间层的硬度及弹性模量

    Figure  5.   Nano hardness and modulus of elasticity of different interlayer. (a) welding interface of Cu interlayer; (b) welding interface of Ni interlayer

    图  6   拉伸样品及其断口形貌

    Figure  6.   Tensile sample and fracture morphology. (a) two interlayer tensile specimens; (b) tensile fracture morphology of two interlayer

    图  7   双壁管原型件及其金相图

    Figure  7.   Prototype parts of DWTS and the metallographic diagram.(a) prototype parts of DWTS; (b) Cu interlayer; (c) Ni interlayer

    表  1   CLF-1钢的化学成分(质量分数,%)

    Table  1   Chemical compositions of CLF-1 steel

    CrWMnVTaCFe
    8.321.50.3650.240.10.098余量
    下载: 导出CSV

    表  2   拉伸结果

    Table  2   Tensile results

    中间层材料测试温度T/℃抗拉强度Rm/MPa断裂位置
    Cu 25 601 钢侧
    400 480 钢侧
    Ni 25 630 钢侧
    400 474 钢侧
    下载: 导出CSV
  • [1]

    Lei Mingzhun, Wu Qigang, Xu Shuling, et al. Design and analysis of the equatorial inboard WCCB blanket module for CFETR[J]. Fusion Engineering and Design, 2020, 161: 111889. doi: 10.1016/j.fusengdes.2020.111889

    [2]

    Wang Wanjing, Wang Jichao, Xie Chunyi, et al. Progress of manufacture technology of CFETR WCCB blanket at ASIPP[J]. Fusion Engineering and Design, 2020, 159: 11758.

    [3]

    Liu S, Peng C, Lu P, et al. Progress on design and related R&D activities for the water-cooled breeder blanket for CFETR[J]. Theoretical and Applied Mechanics Letters, 2019, 9(3): 161 − 172. doi: 10.1016/j.taml.2019.03.001

    [4]

    Magielsen A J, Bakker K, Chabrol C, et al. In-pile performance of a double-walled tube and a tritium permeation barrier[J]. Journal of Nuclear Materials, 2002, 307(1): 832 − 836.

    [5]

    Forest Laurent, Aktaa J, Boccaccini L V, et al. Status of the EU DEMO breeding blanket manufacturing R&D activities[J]. Fusion Engineering and Design, 2020, 152: 11420.

    [6] 顾康家. CLAM钢TIG焊组织与性能的研究[D]. 镇江: 江苏大学, 2009.

    Gu Kangjia. Microstructure and mechanical properties of CLAM steel in TIG welding[D]. Zhenjiang: Jiangsu University, 2009.

    [7] 邵奇栋. 中国低活化马氏体钢TIG焊微观组织与力学性能的研究[D]. 镇江: 江苏大学, 2010.

    Shao Qidong. Microstructure and mechanical properties of TIG welded joint of CLAM steel[D]. Zhenjiang: Jiangsu University, 2010.

    [8]

    Commin L, Rieth M, Widak, V, et al. Characterization of ODS Eurofer/Eurofer dissimilar electron beam welds[J]. Journal of Nuclear Materials, 2013, 442(1-3): 552 − 556. doi: 10.1016/j.jnucmat.2012.11.019

    [9] 陈路, 王泽明, 陶海燕, 等. CLF-1低活化铁素体/马氏体钢真空电子束焊接研究[J]. 焊接技术, 2014, 43(5): 26 − 29.

    Chen Lu, Wang Zeming, Tao Haiyan, et al. Reserach on electron beam welding for CLF-1 reduced activation ferritic/martensitic steel[J]. Welding Technology, 2014, 43(5): 26 − 29.

    [10] 王纪超. 热等静压法制备CFETR包层第一壁钨/钢模块研究[D]. 合肥: 中国科学技术大学, 2017.

    Wang Jichao. Manufacturing of CFETR blanket first wall W/steel mockup using hot isostatic pressing[D]. Hefei: University of Science and Technology of China, 2017.

    [11]

    Wang Jichao, Wang Wanjing, Wei Ran, et al. Effect of Ti interlayer on the bonding quality of W and steel HIP joint[J]. Journal of Nuclear Materials, 2016, 485: 8 − 14.

    [12]

    Widodo Widjaja, Basuki, Jarir Aktaa, et al. Process optimization for diffusion bonding of tungsten with EUROFER97 using a vanadium interlayer[J]. Journal of Nuclear Materials, 2015, 459: 217 − 224. doi: 10.1016/j.jnucmat.2015.01.033

    [13] 高庆然, 王纪超, 王万景, 等. 中国聚变工程实验堆水冷包层钢构件流道成形控制研究[J]. 核聚变与等离子体物理, 2020, 40(2): 155 − 161.

    Gao Qinran, Wang Jichao, Wang Wanjing, et al. Study on the cooling channel dimension control in the manufacture of CFETR WCCB blanket[J]. Nuclear Fusion and Plasma Physics, 2020, 40(2): 155 − 161.

    [14]

    Chen S, Huang J, Lu Q, et al. Microstructures and mechanical properties of laser welding joint of a CLAM steel with revised chemical compositions[J]. Journal of Materials Engineering & Performance, 2016, 25(5): 1848 − 1855.

    [15]

    Noh S, Ando M, Tanigawa H, et al. Friction stir welding of F82H steel for fusion applications[J]. Journal of Nuclear Materials, 2016, 478: 1 − 6. doi: 10.1016/j.jnucmat.2016.05.028

    [16] 吴世凯, 张建超, 廖洪彬, 等. 聚变堆低活化铁素体/马氏体(RAFM)钢焊接研究进展[J]. 机械工程学报, 2019, 55(2): 209 − 217.

    Wu Shikai, Zhang Jianchao, Liao Hongbin, et al. Review on welding technology of RAFM steel[J]. Journal of Mechanical Engineering, 2019, 55(2): 209 − 217.

    [17]

    Hirose T, Shiba K, Sawai T, et al. Effects of heat treatment process for blanket fabrication on mechanical properties of F82H[J]. Journal of Nuclear Materials, 2004, 329: 324 − 327.

    [18]

    Gamsjager E, Svoboda J, Fischer F D, et al. Austenite-to-ferrite phase transformation in low-alloyed steels[J]. Computational Materials Science, 2005, 32(3-4): 360 − 369. doi: 10.1016/j.commatsci.2004.09.031

    [19] 解庆, 李京龙, 张赋升, 等. 铜-钢扩散焊接头钢侧晶间渗透现象的探讨[J]. 焊接, 2011(2): 28 − 31. doi: 10.3969/j.issn.1001-1382.2011.02.006

    Xie Qing, Li Jinglong, Zhang Fusheng, et al. Discussion on the intergranular infiltration phenomenon of copper-steel diffusion welding joint[J]. Welding & Joining, 2011(2): 28 − 31. doi: 10.3969/j.issn.1001-1382.2011.02.006

    [20] 高岩. 高Cr铁素体/马氏体钢的固相连接接头组织形成规律研究[D]. 天津: 天津大学, 2018.

    Gao Yan. Study on microstructure formation rules of solid-state welding joint of 9Cr ferritic/martensitic steel[D]. Tianjin: Tianjin University, 2018.

  • 期刊类型引用(24)

    1. 刘洪旭,刘峰,赵琳,田志凌. 7xxx系铝合金焊接技术研究进展. 热加工工艺. 2024(07): 1-6 . 百度学术
    2. 宗志坚,龙飞永,贤锦章,刘华荣,王飞. 铝合金榫卯结构的几何特征. 机械设计. 2024(06): 1-6 . 百度学术
    3. 刘邵,房卫萍,易耀勇,邓运来,余陈. 2205双相不锈钢双丝CMT焊接工艺与焊缝组织特征研究. 热加工工艺. 2022(01): 147-151 . 百度学术
    4. 李帅贞,韩晓辉,吴来军,刘裕航,王鹏,宋晓国,檀财旺. 层道排布对6005A铝合金MIG焊接头微观组织及力学性能的影响. 材料导报. 2022(17): 157-161 . 百度学术
    5. 雷小伟,马照伟,陈利阳,张楠. 不同CMT焊接工艺对5083铝合金焊缝成形及性能的影响. 电焊机. 2022(09): 39-44 . 百度学术
    6. 姚尚坤,冯曰海,黄俊,王立新,赵斌彬. 5A06铝合金GMAW熔透接头组织与性能对比研究. 电焊机. 2022(11): 52-60 . 百度学术
    7. 陈圣龙,武子琴,朱晋良,王立伟,梁志敏. 7N01铝合金多层CMT焊对接头组织与力学性能的影响. 金属加工(热加工). 2021(04): 47-50 . 百度学术
    8. 刘邵,房卫萍,易耀勇,邓运来. 2205双相不锈钢药芯双丝CMT焊接接头组织与性能研究. 热加工工艺. 2020(05): 16-19+24 . 百度学术
    9. 曹彬彬,李杜伟. 钛、铝制压力容器制造中焊接方法的应用分析. 机电工程技术. 2020(05): 179-180 . 百度学术
    10. 胡永鹅,龙琼,韩兴科,何波,王尧,杨秀芳. 铝合金材料焊接方法研究进展. 贵州农机化. 2020(03): 15-19 . 百度学术
    11. 邓德伟,吕捷,马玉山,张勇,黄治冶. FV520B钢激光打底焊结合CMT填充焊焊接接头的组织和性能. 中国激光. 2020(11): 40-50 . 百度学术
    12. 王立伟,索英超,吴朝峰,汪殿龙,梁志敏,董思齐. 高频脉冲复合直流TIG对6N01铝合金焊接接头组织和硬度的影响. 沈阳大学学报(自然科学版). 2019(03): 173-177 . 百度学术
    13. 任思蒙,刘庆永,毛晓东,赵丕植. 6082-T6铝合金CMT+P焊与双脉冲MIG焊的接头组织及性能对比分析. 轻合金加工技术. 2019(10): 62-65 . 百度学术
    14. 尹洪权,张顺,朱新荣,杨东. 不锈钢CMT焊接弧长修正和推进修正对焊缝成形的影响. 科技经济导刊. 2018(24): 31-32+34 . 百度学术
    15. 梁志敏,石康柠,李伟坡,曹益,路浩. 6N01铝合金水冷MIG焊接头组织和性能. 焊接学报. 2018(09): 25-30+130 . 本站查看
    16. 刘朋,韩善果,易耀勇,王金钊,刘志聃. Q690高强钢双丝CMT焊接接头组织分析. 热加工工艺. 2018(21): 250-253 . 百度学术
    17. 刘晓莉,王建,王勇,闫德俊,冯梓宁,陈军,高飞. 铝合金中厚板双丝CMT单面焊双面成形焊接工艺. 焊接技术. 2018(11): 44-47 . 百度学术
    18. 马文斌. 汽车双层铝合金板材焊接工艺优化研究. 中国金属通报. 2017(10): 48-49 . 百度学术
    19. 刘强,张南南,张亚雄. 深冷处理对6061铝合金冷金属过渡焊接接头组织和力学性能的影响. 热加工工艺. 2017(19): 244-246 . 百度学术
    20. 路浩,张合礼,仲崇成,张风东. 高速动车组焊接质量先进支撑技术体系建设. 中国铁路. 2017(05): 47-54 . 百度学术
    21. 路浩,苏陆军. 智能化焊接装备及工艺评价系统研发. 兵器材料科学与工程. 2016(04): 105-111 . 百度学术
    22. 路浩,汪认. 智能化焊接装备及工艺评价系统研发. 金属加工(冷加工). 2016(S1): 722-728 . 百度学术
    23. 路浩. 高速列车用铝合金冷金属过渡焊接工艺疲劳性能. 焊接. 2015(06): 64-67+76 . 百度学术
    24. 路浩. 铝合金冷金属过渡焊接及补焊组织特征. 焊接. 2015(11): 34-37+70-71 . 百度学术

    其他类型引用(18)

图(7)  /  表(2)
计量
  • 文章访问数:  283
  • HTML全文浏览量:  19
  • PDF下载量:  83
  • 被引次数: 42
出版历程
  • 收稿日期:  2021-08-09
  • 录用日期:  2022-02-17
  • 网络出版日期:  2022-02-18
  • 刊出日期:  2022-01-24

目录

    /

    返回文章
    返回