高级检索

基于视觉与重力融合传感的焊枪位姿反馈控制

张天一, 朱志明, 朱传辉

张天一, 朱志明, 朱传辉. 基于视觉与重力融合传感的焊枪位姿反馈控制[J]. 焊接学报, 2021, 42(11): 1-7. DOI: 10.12073/j.hjxb.20210604001
引用本文: 张天一, 朱志明, 朱传辉. 基于视觉与重力融合传感的焊枪位姿反馈控制[J]. 焊接学报, 2021, 42(11): 1-7. DOI: 10.12073/j.hjxb.20210604001
ZHANG Tianyi, ZHU Zhiming, ZHU Chuanhui. Position and pose feedback control of welding torch based on the fusion of vision and gravity sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 1-7. DOI: 10.12073/j.hjxb.20210604001
Citation: ZHANG Tianyi, ZHU Zhiming, ZHU Chuanhui. Position and pose feedback control of welding torch based on the fusion of vision and gravity sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 1-7. DOI: 10.12073/j.hjxb.20210604001

基于视觉与重力融合传感的焊枪位姿反馈控制

基金项目: 国家自然科学基金面上项目(51775301)
详细信息
    作者简介:

    张天一,硕士;主要研究方向为图像处理与焊接自动化;Email: 185810794@qq.com

    通讯作者:

    朱志明,教授;Email: zzmdme@tsinghua.edu.cn.

  • 中图分类号: TG 409

Position and pose feedback control of welding torch based on the fusion of vision and gravity sensing

  • 摘要: 为了实现焊缝跟踪、焊枪高度及其空间姿态的检测和闭环反馈控制,有效控制任意空间姿态焊接接头的焊缝成形质量,构建了基于视觉传感与重力感应融合的焊枪空间位置、姿态在线检测与闭环反馈控制系统;结合建立的检测数学模型,检测系统实现了对焊枪相对于工件的空间位置和姿态、焊枪相对于重力加速度方向的空间姿态、焊接接头相对于重力加速度方向的空间姿态的在线实时检测. 结果表明,系统实现了焊枪空间姿态的实时反馈控制,控制精度可达0.1°,并实现了电弧焊接过程中的焊缝横向实时跟踪和焊枪高度实时调控,焊缝横向跟踪与焊枪高度调控的平均偏差分别为0.20和0.78 mm. 实现任意空间姿态焊接接头的自动化焊接,可有效提升焊接装备的智能化水平.
    Abstract: In order to realize seam tracking, detection and closed-loop feedback control of welding torch height and its spatial pose at the same time, which effectively controlled the weld forming quality of welded joints with any different spatial pose, this paper constructed an on-line detection and closed-loop feedback control system of welding torch spatial pose and position based on vision and gravity fusion sensing. Combined with the mathematical detection model, the detection system realized the online real-time detection of the spatial position and pose of the welding torch relative to the workpiece, the spatial pose of the welding torch relative to the direction gravitational acceleration, and the spatial pose of the being welded joint relative to the direction of gravitational acceleration. Results showed the system realized the real-time control of the welding torch spatial pose with an accuracy of 0.1°, and the real-time weld seam lateral tracking and the real-time welding torch height control in the arc welding process with the average deviation of 0.20 mm and 0.78 mm, respectively. Realizing the automatic welding of welded joints with any spatial pose can effectively improve the intelligent level of welding equipment.
  • 图  1   焊枪的相对空间位姿参数表征

    Figure  1.   Characterization of relative spatial posture parameters of welding torch

    图  2   视觉传感与重力感应融合的多源传感器结构

    Figure  2.   Structure of multi-source sensor based on fusion of vision sensing and gravity sensing

    图  3   传感器结构参数与安装参数

    Figure  3.   Sensor structure parameters and installation parameters

    图  4   CCD图像平面内的关键数据示意图

    Figure  4.   Schematic diagram of key data in CCD image plane

    图  5   焊枪相对空间位姿参数获取流程

    Figure  5.   Acquisition process of relative spatial posture parameters of welding torch

    图  6   焊接机器人的运动执行机构示意图

    Figure  6.   Diagram of motion actuator of welding robot

    图  7   运动控制系统示意图

    Figure  7.   Schematic diagram motion control system

    图  8   焊枪空间姿态闭环反馈控制流程

    Figure  8.   Closed loop feedback control flow of welding torch spatial pose

    图  9   焊枪空间位置反馈控制试验

    Figure  9.   Feedback control of welding torch spatial position

    图  10   焊枪相对位置闭环反馈控制流程图

    Figure  10.   Flow chart of closed loop feedback control for relative position of welding torch

    图  11   焊枪横向偏差与高度反馈控制试验结果

    Figure  11.   Experimental results of welding torch horizontal deviation and height with feedback control. (a) welding torch transverse error; (b) welding torch height control error

    图  12   焊缝成形位置和效果

    Figure  12.   Weld forming position and effect. (a) transverse error; (b) height feedback; (c) double axis

  • [1] 侯震, 许燕玲, 黄色吉, 等. 视觉传感技术在机器人焊接中的应用[J]. 上海交通大学学报, 2016, 50(S1): 55 − 58.

    Hou Zhen, Xu Yanling, Huang Seji, et al. Application status of vision sensing used in robotic welding[J]. Journal of Shanghai Jiaotong University, 2016, 50(S1): 55 − 58.

    [2] 李永全. 一汽大众汽车有限公司焊装车间成本控制策略研究[D]. 长春: 吉林大学, 2017.

    Li Yongquan. Study on the cost control strategy of the welding workshop of FAW-Volkswagen[D]. Changchun: Jilin University, 2017.

    [3] 王中任, 王小刚, 刘德政, 等. 基于焊枪轮廓特征提取的焊接偏差测定方法[J]. 焊接学报, 2020, 41(7): 59 − 64. doi: 10.12073/j.hjxb.20191026002

    Wang Zhongren, Wang Xiaogang, Liu Dezheng, et al. Welding deviation measurement method based on welding torch contour feature extraction[J]. Transactions of the China Welding Institution, 2020, 41(7): 59 − 64. doi: 10.12073/j.hjxb.20191026002

    [4]

    Yu R, Zhao Z, Bai L, et al. Prediction of weld reinforcement based on vision sensing in GMA additive manufacturing process[J]. Metals, 2020, 10(8): 1041. doi: 10.3390/met10081041

    [5] 洪宇翔, 杨明轩, 都东, 等. 铝合金爬坡TIG焊熔池失稳状态的视觉检测[J]. 焊接学报, 2021, 42(10): 8 − 13.

    Hong Yuxiang, Yang Mingxuan, Du Dong, et al. Unstable state vision detection of molten pool during aluminum alloy climbing-TIG welding[J]. Transactions of the China Welding Institution, 2021, 42(10): 8 − 13.

    [6]

    He Y, Li D, Pan Z, et al. Dynamic modeling of weld bead geometry features in thick plate GMAW based on machine vision and learning[J]. Sensors, 2020, 20(24): 7104. doi: 10.3390/s20247104

    [7]

    Yin Z, Ma X, Zhen X, et al. Welding seam detection and tracking based on laser vision for robotic arc welding[J]. Journal of Physics Conference Series, 2020, 1650(2): 22 − 30.

    [8] 赵世通. 焊接机器人可靠性技术的研究[J]. 科技创新与应用, 2018(32): 141 − 142. doi: 10.3969/j.issn.2095-2945.2018.32.063

    Zhao Shitong. Research on reliability technology of welding robot[J]. Technology Innovation and Application, 2018(32): 141 − 142. doi: 10.3969/j.issn.2095-2945.2018.32.063

    [9]

    Li G, Hong Y, Gao J, et al. Welding seam trajectory recognition for automated skip welding guidance of a spatially intermittent welding seam based on laser vision sensor[J]. Sensors, 2020, 20(13): 3657. doi: 10.3390/s20133657

    [10]

    Lee K, Hwang I, Kim Y M , et al. Real-time weld quality prediction using a laser vision sensor in a lap fillet joint during gas metal arc welding[J]. Sensors, 2020, 20(6): 1625. doi: 10.3390/s20061625

    [11] 张天一, 朱志明, 郭吉昌, 等. 基于视觉与重力传感的焊缝空间姿态检测技术研究与发展[J]. 电焊机, 2020, 50(11): 1 − 6.

    Zhang Tianyi, Zhu Zhiming, Guo Jichang, et al. Research and development for detection technology of spatial posture of weld seam based on vision and gravity sensing[J]. Electric Welding Machine, 2020, 50(11): 1 − 6.

图(12)
计量
  • 文章访问数:  313
  • HTML全文浏览量:  41
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-03
  • 录用日期:  2021-12-10
  • 网络出版日期:  2022-01-10
  • 刊出日期:  2021-11-24

目录

    /

    返回文章
    返回