高级检索

钛/铝激光熔钎焊接头原位 TEM 拉伸断裂行为

陈曦, 姜楠, 毕江, 姜梦, 梁静伟, 林三宝

陈曦, 姜楠, 毕江, 姜梦, 梁静伟, 林三宝. 钛/铝激光熔钎焊接头原位 TEM 拉伸断裂行为[J]. 焊接学报, 2021, 42(11): 22-28. DOI: 10.12073/j.hjxb.20210420001
引用本文: 陈曦, 姜楠, 毕江, 姜梦, 梁静伟, 林三宝. 钛/铝激光熔钎焊接头原位 TEM 拉伸断裂行为[J]. 焊接学报, 2021, 42(11): 22-28. DOI: 10.12073/j.hjxb.20210420001
CHEN Xi, JIANG Nan, BI Jiang, JIANG Meng, LIANG Jingwei, Lin Sanbao. In-situ TEM tensile fracture behavior of titanium/aluminum laser brazing joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 22-28. DOI: 10.12073/j.hjxb.20210420001
Citation: CHEN Xi, JIANG Nan, BI Jiang, JIANG Meng, LIANG Jingwei, Lin Sanbao. In-situ TEM tensile fracture behavior of titanium/aluminum laser brazing joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 22-28. DOI: 10.12073/j.hjxb.20210420001

钛/铝激光熔钎焊接头原位 TEM 拉伸断裂行为

基金项目: 国家重点研发计划资助项目(2017YFB1301600)
详细信息
    作者简介:

    陈曦,博士,助理教授;主要从事异种材料激光焊接与连接;Email: chenxi_laser@hit.edu.cn

    通讯作者:

    姜梦,博士,讲师;Email: jiangmeng@hit.edu.cn.

  • 中图分类号: TG 407

In-situ TEM tensile fracture behavior of titanium/aluminum laser brazing joint

  • 摘要: 对于钛/铝异种金属熔钎焊接头,钛合金侧界面金属间化合物层的形态、厚度对接头力学性能存在显著影响.传统微观组织表征 + 宏观力学性能测试的方法无法直观获得纳米尺度下裂纹的萌生及扩展过程.基于此,采用原位TEM表征技术,对钛/铝熔钎焊接头界面金属间化合物层处的拉伸断裂行为展开研究,阐明界面金属间化合物层对接头力学性能的影响规律.结果表明,金属间化合物层物相主要以TiAl相和TiAl3相为主,在原位TEM拉伸过程中,焊缝熔合区铝合金晶粒内部容易发生位错塞积,裂纹倾向于在位错塞积处萌生扩展.界面层不是拉伸试样的薄弱区,试样倾向于在焊缝熔合区或钛合金侧发生断裂.
    Abstract: The shape and thickness of intermetallic layer (IMC) near the titanium alloy have a significant effect on the mechanical properties of titanium/aluminum dissimilar welding-brazing joints. The process of crack initiation and propagation at nanoscale cannot be obtained directly by the traditional method of microstructure characterization and macroscopic mechanical property test. Based on this, the tensile fracture behavior at the interface IMC of the titanium/aluminum fusion brazing joint was studied by in-situ TEM characterization technique to clarify the influence of the interface IMC on the mechanical properties of the joint. The results show that the main phases of IMC are TiAl and TiAl3. During the in-situ TEM tensile process, dislocation pile-up was easy to occur at the grain boundary in the fusion zone, and the cracks tended to initiate and propagate at this location. The interfacial layer is not the weak zone of the tensile specimen, and the specimen tends to fracture in the fusion welding zone or on the side of the titanium alloy.
  • 图  1   原位TEM拉伸FIB沉积位置

    Figure  1.   FIB deposition locations of in situ TEM tensile test. (a) zigzag IMC; (b) planar IMC

    图  2   FIB试样透射电镜显微形貌

    Figure  2.   FIB deposition locations of in situ TEM tensile test. (a) bright field of zigzag IMC; (b) dark field of zigzag IMC; (c) bright field of planar IMC; (d) dark field of planar IMC

    图  3   IMC界面层EDS线扫描

    Figure  3.   EDS line scan of IMC interface layer. (a) zigzag IMC; (b) planar IMC

    图  4   锯齿状界面IMC层物相鉴定

    Figure  4.   Phase identification of the jagged interface IMC layer. (a) SAEA position; (b) position I; (c) position II; (d) position III

    图  5   平面状界面IMC层物相鉴定

    Figure  5.   Phase identification of the planar interface IMC layer. (a) SAEA position; (b) position I; (c) position II; (d) position III; (e) position IV

    图  6   变形过程中位错形态变化

    Figure  6.   The dislocation morphology changes during deformation. (a) location formation; (b) dislocation increase; (c) dislocation pile-up; (d) dislocation limitation

    图  7   锯齿状试样原位拉伸过程中裂纹扩展

    Figure  7.   Crack propagation of jagged sample during transmission in-situ tensile process. (a) crack initiation; (b) crack extension; (c) crack propagation; (d) completely broken

    图  8   平面状试样原位拉伸过程中裂纹扩展

    Figure  8.   Crack propagation of planar sample during transmission in-situ tensile process. (a) crack initiation; (b) crack extension; (c) crack propagation; (d) completely broken

    表  1   试验合金的化学成分(质量分数,%)

    Table  1   Chemical compositions of the experimental alloy

    合金TiAlVMgSiFeCu
    TC4余量6.213.930.13
    6061Al0.2余量1.000.630.290.27
    下载: 导出CSV
  • [1] 孙逸铭, 张泽群, 檀财旺, 等. TC4钛/5052铝异种金属激光点焊工艺特性研究[J]. 激光与光电子学进展, 2019, 56(3): 205 − 212.

    Sun Yiming, Zhang Zequn, Tan Caiwang, et al. Laser spot welding characteristics of dissimilar metals: TC4 titanium/5052 aluminum[J]. Lasers & Optoelectronics Progress, 2019, 56(3): 205 − 212.

    [2]

    Jiang P, Chen R. Research on interfacial layer of laser-welded aluminum to titanium[J]. Materials Characterization, 2019, 154: 264 − 268. doi: 10.1016/j.matchar.2019.06.012

    [3]

    Bi J, Lei Z L, Chen Y B, et al. Densification, microstructure and mechanical properties of an Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy printed by selective laser melting[J]. Materials Science and Engineering A, 2020, 774: 138931. doi: 10.1016/j.msea.2020.138931

    [4]

    Guo S, Peng Y, Cui C, et al. Microstructure and mechanical characterization of re-melted Ti-6Al-4V and Al-Mg-Si alloys butt weld[J]. Vacuum, 2018, 154: 58 − 67. doi: 10.1016/j.vacuum.2018.04.048

    [5]

    Chen X, Lei Z L, Chen Y B, et al. Effect of laser beam oscillating on laser welding-brazing of Ti/Al dissimilar metals[J]. Materials, 2019, 12: 4165. doi: 10.3390/ma12244165

    [6]

    Li Peng, Lei Zhenglong, Zhang Xinrui, et al. Effects of laser power on the interfacial intermetallic compounds and mechanical properties of dual-spot laser welded-brazed Ti/Al butt joint[J]. Optics & Laser Technology, 2020, 124: 105987.

    [7]

    Lei Zhenglong, Li Peng, Zhang Xinrui, et al. Microstructure and mechanical properties of welding-brazing of Ti/Al butt joints with laser melting deposition layer additive[J]. Journal of Manufacturing Processes, 2019, 38: 411 − 421. doi: 10.1016/j.jmapro.2019.01.040

    [8]

    Xia Hongbo, Tao Wang, Li Liqun, et al. Effect of laser beam models on laser welding-brazing Al to steel[J]. Optics & Laser Technology, 2020, 122: 105845.

    [9]

    Alexander V, Igor V, Anatoliy O, et al. Effect of the aluminum alloy composition (Al-Cu-Li or Al-Mg-Li) on structure and mechanical properties of dissimilar laser welds with the Ti-Al-V alloy[J]. Optics & Laser Technology, 2020, 126: 106135.

    [10]

    Wang Z W, Shen J Q, Hu S S, et al. Investigation of welding crack in laser welding-brazing welded TC4/6061 and TC4/2024 dissimilar butt joints[J]. Journal of Manufacturing Processes, 2020, 60: 54 − 60. doi: 10.1016/j.jmapro.2020.10.029

    [11] 郭顺, 彭勇, 朱军, 等. 钛/铝激光焊接的微观组织及力学性能[J]. 中国激光, 2018, 45(11): 102 − 110.

    Guo Shun, Peng Yong, Zhu Jun, et al. Microstructure and mechanical properties of laser welded Ti/Al alloys[J]. Chinese Journal of Lasers, 2018, 45(11): 102 − 110.

    [12]

    Chen S H, Li L Q, Chen Y B, et al. Joining mechanism of Ti/Al dissimilar alloys during laser welding-brazing process[J]. Journal of Alloys and Compounds, 2011, 509(3): 891 − 898. doi: 10.1016/j.jallcom.2010.09.125

    [13] 宋志华, 吴爱萍, 姚为, 等. 光束偏移量对钛/铝异种合金激光焊接接头组织和性能的影响[J]. 焊接学报, 2013, 34(1): 105 − 108,118.

    Song Zhihua, Wu Aiping, Yao Wei, et al. Effect of laser offset on microstructure and mechanical properties of Ti/Al dissimilar joint by laser welding[J]. Transactions of the China Welding Institution, 2013, 34(1): 105 − 108,118.

    [14]

    Chen X, Lei Z L, Chen Y B, et al. Microstructure and tensile properties of Ti/Al dissimilar joint by laser welding-brazing at subatmospheric pressure[J]. Journal of Manufacturing Processes, 2020, 56: 19 − 27. doi: 10.1016/j.jmapro.2020.04.062

    [15]

    Li X Q, Andrew M M. Precise measurement of activation parameters for individual dislocation nucleation during in situ TEM tensile testing of single crystal nickel[J]. Scripta Materialia, 2021, 197: 113764. doi: 10.1016/j.scriptamat.2021.113764

    [16]

    Cai Z P, Cui X F, Liu E B, et al. Fracture behavior of high-entropy alloy coating by in-situ TEM tensile testing[J]. Journal of Alloys and Compounds, 2017, 729: 897 − 902. doi: 10.1016/j.jallcom.2017.09.233

    [17]

    Frédéric M, Daniel C, Marc L, et al. In situ TEM observations of reverse dislocation motion upon unloading in tensile-deformed UFG aluminium[J]. Acta Materialia, 2012, 60(8): 3402 − 3414. doi: 10.1016/j.actamat.2012.02.049

    [18]

    Nie A M, Bu Y Q, Huang Y C, et al. Direct observation of room-temperature dislocation plasticity in diamond[J]. Matter, 2020, 2(5): 1222 − 1232. doi: 10.1016/j.matt.2020.02.011

  • 期刊类型引用(3)

    1. 张明军,李晨希,邹江林,程波,张健,仝永刚,胡永乐,陈根余. AZ31B镁合金功率调制环形光斑光纤激光焊接试验研究. 机械工程学报. 2025(02): 151-161 . 百度学术
    2. 刘坤,李洁,王浩,简思捷. 镁合金焊接凝固裂纹敏感性评价及晶间液相回填规律分析. 焊接学报. 2023(09): 9-15+129 . 本站查看
    3. 焦婧,黄金鑫,张志凯. 论带复杂油路类镁合金铸件的清理方法. 世界有色金属. 2022(23): 175-177 . 百度学术

    其他类型引用(2)

图(8)  /  表(1)
计量
  • 文章访问数:  232
  • HTML全文浏览量:  39
  • PDF下载量:  42
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-04-19
  • 网络出版日期:  2022-01-11
  • 刊出日期:  2021-11-24

目录

    /

    返回文章
    返回