Effect of Cr on properties of TZM alloy joints brazed with Mo-45Ni brazing filler metal
-
摘要: 根据实际工程需求,开发了能在1 300 ℃下服役的TZM合金专用钎料,并测试了该钎料在TZM合金表面的润湿性能,引入“基准润湿面积”的概念判断该钎料的润湿性,并探讨了钎料中Cr元素对钎料润湿性能、抗剪强度的影响规律. 分析了钎焊接头的强化机理,探明了接头的抗剪强度随着Cr元素的加入先变大后变小,可为实际工程应用提供重要参考. 结果表明,当钎料中Cr元素含量为3%(质量分数)时,钎料的润湿性最好,接头的抗剪强度达到135 MPa的最高值.
-
关键词:
- TZM合金 /
- Mo-Ni-Cr钎料 /
- 电弧熔炼 /
- 真空钎焊
Abstract: In this paper, the application of TZM alloy and the development on brazing technology of TZM alloy is described. Combined with the practical engineering applications, the special brazing filler metal for TZM alloy which can serve at 1 300 ℃ is developed. The wettability of the brazing filler metal(BFM) over the surface of TZM alloy is tested, a reference wetting area is introduced to determine the vacuum wettability of the BFM and the effect of Cr on the properties of BFM is discussed. The results show that the corresponding relationship between shear strength and composition is that with the addition of Cr, the shear strength of the joint first becomes larger and then becomes smaller, which can provide an important reference for practical engineering applications. It is found that when the content of Cr in the BFM is 3 wt.%, the wettability of the BFM is the best and the shear strength of the joint is the highest at 135 MPa.-
Keywords:
- TZM alloy /
- Mo-Ni series brazing filler metal /
- arc smelting /
- vacuum brazing
-
-
试样编号 润湿面积S/cm2 基准润湿面积Sb/cm2 1号 2.29 1.635 2号 2.045 1.515 3号 2.292 2.128 4号 1.347 1.532 表 2 图8中各能谱点的元素成分分析(原子分数,%)
Table 2 Elemental composition analysis of the energy spectrum points in Fig.8
位置 Zr O Mo 推测结构 1 29.76 68.32 1.92 ZrO2 2 30.32 65.78 3.9 ZrO2 表 3 图9中各能谱点的元素成分(原子分数,%)
Table 3 Elemental composition analysis of the energy spectrum points in Fig.9
位置 序号 Mo Ni Ti Zr C 推测结构 图9a 1 89.57 − 0.31 2.51 7.61 TZM 2 89.92 − 0.32 2.52 7.24 TZM 3 52.88 47.12 − − − MoNi 4 21.77 78.23 − − − MoNi3 图9b 1 88.93 − 0.4 2.54 8.13 TZM 2 89.35 − 0.54 2.55 7.56 TZM 3 51.28 47.12 − − 1.6 MoNi 4 26.42 71.25 − − 2.33 MoNi3 图9c 1 86.87 − 1.27 2.54 9.32 TZM 2 54.55 45.45 − − − MoNi 3 26.71 73.29 − − 1.6 MoNi3 4 3.49 − 96.51 − − Ti 图9d 1 88.69 − 1.92 2.49 6.9 TZM 2 88.09 − 1.83 2.74 7.34 TZM 3 50.83 49.17 − − − MoNi 4 26.85 73.15 − − − MoNi3 -
[1] Chan H Y, Liaw D W, Shiue R K. Microstructural evolution of brazing Ti-6Al-4V and TZM using silver-based braze alloy[J]. Materials Letters, 2004, 58(7−8): 1141 − 1146. doi: 10.1016/j.matlet.2003.09.007
[2] 牛超楠, 韩桂海, 宋晓国, 等. TiZrNiCu钎料真空钎焊TZM合金接头界面组织及力学性能[J]. 稀有金属, 2014, 38(6): 283 − 289. Niu Chaonan, Han Guihai, Song Xiaoguo, et al. Interfacial microstructure and mechanical properties of TZM alloy joints vacuum brazed using Ti-Zr-Ni-Cu filler metal[J]. Chinese Journal of Rare Metals, 2014, 38(6): 283 − 289.
[3] 徐庆元, 李宁, 熊国刚, 等. 钛基钎料钎焊石墨与TZM合金接头组织和性能研究[J]. 稀有金属, 2005, 29(6): 823 − 826. doi: 10.3969/j.issn.0258-7076.2005.06.005 Xu Qingyuan, Li Ning, Xiong Guogang, et al. Structure and property of graphite and TZM brazing bonding with Ti filler[J]. Chinese Journal of Rare Metals, 2005, 29(6): 823 − 826. doi: 10.3969/j.issn.0258-7076.2005.06.005
[4] 田骁. Ti-Ni钎料钎焊TZM合金工艺及机理研究[D]. 哈尔滨: 哈尔滨工业大学 , 2016. Tian Xiao. Research on brazing process and mechanism of TZM alloy by using Ti-Ni brazing alloys[D]. Harbin: Harbin Institute of Technology, 2016.
[5] 鲍丽, 龙伟民, 张冠星, 等. 微量Ca元素对AgCuZn钎料性能的影响[J]. 焊接学报, 2012, 33(12): 57 − 60. Bao Li, Long Weimin, Zhang Guanxing, et al. Effect of trace calcium on performance of AgCuZn alloy[J]. Transactions of the China Welding Institution, 2012, 33(12): 57 − 60.
[6] Wu J, Xue S B, Zhang P. Effect of In and Pr on the microstructure and properties of low-silver filler metal[J]. Crystals, 2021, 11(8): 929. doi: 10.3390/cryst11080929
[7] Fan Z X, Guo M, Fu W, et al. Wettability and spreading behavior of Sn-Cr alloys on SiC[J]. Materials Chemistry and Physics, 2021, 272: 124979. doi: 10.1016/j.matchemphys.2021.124979
[8] 浦娟, 张雷, 吴铭方, 等. SnAg1.0Cu0.5对Ag30CuZnSn药芯钎料润湿性能及钎焊接头力学性能的影响[J]. 焊接学报, 2021, 42(1): 58 − 64. doi: 10.12073/j.hjxb.20201105002 Pu Juan, Zhang Lei, Wu Mingfang, et al. Effect of SnAg1.0Cu0.5 on the wettallity of Ag30CuZnSn flux cored brazing filler and mechanical properties of its brazed joints[J]. Transactions of the China Welding Institution, 2021, 42(1): 58 − 64. doi: 10.12073/j.hjxb.20201105002
[9] Tao Y, Xue S B, Liu H, et al. Effect of Cr addition on microstructure and properties of AuGa solder[J]. Metals, 2020, 10(11): 1449. doi: 10.3390/met10111449
[10] Lu Q B, Zhong S J, Li S N, et al. Intergranular infiltration of TZM alloy joints brazed using Ni-Ti brazing filler alloy at high temperature[J]. Rare Metal Materials and Engineering, 2019, 48(8): 2418 − 2423.
[11] Han G H, Zhao H Y, Song X G, et al. Interfacial microstructure and properties of TZM alloy and ZrCp-W composite joints brazed using Ti-50Ni filler[J]. Rare Metal Materials and Engineering, 2018, 47(6): 1936 − 1940.
[12] Yu H, Long W M, Zhong S J, et al. Wear resistance of Zr/WC composite coatings on Cr12MoV steel surface by electric spark deposition[J]. China Welding, 2019, 28(1): 35 − 41.
[13] Li Z J, Fu W, Hu S P, et al. First-principles calculations of the effects of the interface microstructure on the wettability of a Cu-Ti/AlN system[J]. Ceramics International, 2021, 47(13): 18592 − 18601. doi: 10.1016/j.ceramint.2021.03.188
[14] 胡胜鹏, 李文强, 付伟, 等. BNi-2非晶钎料钎焊高铌TiAl合金与GH3536合金接头组织与性能[J]. 航空学报, 2021, 42(3): 423 − 434. Hu Shengpeng, Li Wenqiang, Fu Wei, et al. Interfacial microstructure and mechanical properties of high Nb containing TiAl alloy and GH3536superalloy brazed using amorphous BNi-2 filler[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 423 − 434.
[15] Chen Z B, Hu S P, Song X G, et al. Brazing of SiC ceramics pretreated by chromium coating using inactive AgCu filler metal[J]. International Journal of Applied Ceramic Technology, 2020, 17(6): 2591 − 2597. doi: 10.1111/ijac.13605
[16] 张冠星, 龙伟民, 鲍丽, 等. 硫对银钎料及钎焊性能的影响[J]. 焊接学报, 2013, 34(1): 77 − 80. Zhang Guanxing, Long Weimin, Bao Li, et al. Effect of sulphur on silver filler metal and brazing properties[J]. Transactions of the China Welding Institution, 2013, 34(1): 77 − 80.