-
7系铝合金作为一类热处理强化超硬铝合金,在航天、轨道交通等领域的应用引起关注[1-2]. 该合金系存在抗疲劳性差,结构件焊缝易产生热裂纹,接头强度下降大,及抗剥蚀能力较差等缺点[3-4]. 在湿空气、海水等复杂工况服役时,易受到应力与腐蚀性介质的耦合作用,发生应力腐蚀、磨蚀等[5-11]. 要获得在应力和腐蚀介质耦合作用环境下耐腐蚀的铝合金构件,必须了解工艺、金相组织、应力和耐蚀性之间的关系. Shen等人[12]和Gou等人[13]的研究表明激光−MIG复合焊7B05-T5铝合金以及MIG焊A7N01S-T5的母材和热影响区易于发生应力腐蚀开裂,而焊缝区对应力腐蚀开裂并不敏感. Marlaud等人[14]的研究指出7 系铝合金的剥落腐蚀存在两种不同的机制,即晶间溶解致损伤(IDD)和晶间断裂致损伤(IFD). 李智等人[15]研究了应力对2系铝合金腐蚀损伤行为的作用,结果表明材料的腐蚀损伤会引起点蚀和微裂纹,破坏材料的连续性,影响材料的强度与塑性. 关于7075铝合金应力腐蚀开裂机理也有部分研究[16]. Wang等人[17]对高强铝合金在不同环境中的应力腐蚀行为进行了定量对比研究,发现7075铝合金在3.5%NaCl溶液中的应力腐蚀敏感性比在薄液层下的高. 然而,7075铝合金焊接接头的耐蚀性与外加应力的相关性方面的系统性研究并不完善.
应力与腐蚀环境耦合作用是铝制构件常见的一种外界作用形式. 课题组在前期研究过程中也对实验室用小型应力耦合作用下进行电化学腐蚀的试验装置进行了探索[18]. 基于此恒载荷试验原理,文中研究了7075铝合金MIG焊接头在不同应力下的耐蚀性,并结合金相组织、力学性能进行探讨,为获得在腐蚀环境和应力耦合作用下具有优异性能的MIG焊7075铝合金的工艺设计提供理论依据.
-
试验材料选用7075-T6铝合金板,尺寸为120 mm×100 mm×5 mm,采用V形坡口. 选用直径为1.2 mm的ER5356焊丝,以高纯Ar (99. 99%)作为保护气体. 焊接设备为Powermaster 320SP 型MIG焊机,分别采用单面焊和双面焊施焊,工艺参数如表1所示.
表 1 焊接工艺参数
Table 1. Welding process parameters
焊接
方法焊接电流
I/A电弧电压
U/V焊接速度
v/(cm·min−1)气体流量
Q/(L·min−1)单面焊 118 20.8 42 ~ 47.6 20 双面焊 130 21.6 42 ~ 47.6 20 将焊后的7075铝合金板线切割成如图1所示试样,用于随后的腐蚀试验. 采用Keller试剂对磨抛后的金相试样浸蚀,并进行Axio LabA1型光学显微镜观察. 利用AI-7000M型万能材料试验机以0.5 mm/min的速度进行拉伸试验,参照GB/T 228—2002《金属材料室温拉伸试验方法》制作拉伸试样,试样断口形貌采用JXA-8230型电子探针进行分析.图2为不同应力作用下的腐蚀试验采用恒载荷试验装置的原理图.
-
图3为7075铝合金单/双面MIG焊接头和母材的金相组织. 图3a和图3b为焊缝区的金相组织,该区域主要由α-Al固溶体与弥散分布的强化相组成. 而图3c和图3d所示的远离焊缝区的热影响区组织与母材轧制组织类似. 与图3e中7075轧制铝合金的粗大的梭形组织相比,双面焊焊缝的晶粒更加细小. 焊缝区域的晶粒主要由等轴晶和等轴枝晶构成,这与文献[19]研究一致. 无论单面焊还是双面焊,近焊缝一侧主要为等轴晶和枝晶,熔合区组织较为粗大. 双面焊与单面焊相比,组织较细小,并且明显看出析出相粒子增多. 在远离焊缝的母材侧,其组织很大程度上保留母材的轧制板条特征. 从热循环的角度,焊缝距热源较近,温度梯度较小,有不同程度上的成分过冷,有利于轴向晶的形成[20].
图 3 焊接接头及7075铝合金母材的金相组织
Figure 3. Microstructure of welded joints and base metal of 7075 aluminum alloy. (a) weld of single-side welding; (b) weld of double-side welding; (c) zone away from weld of single-side welding; (d) zone away from weld of double-side welding; (e) base metal
焊接过程中,熔池在较大过冷度下冷却结晶后形成了非平衡铸态组织,使其细化. 同时,双面焊存在两次热输入,前一焊道对后一焊道的预热作用和后一焊道对前一焊道的热处理作用有助于应力相抵、组织均匀化和晶粒细化[21]. 由于母材和焊丝合金系不同,在熔化焊过程中发生了复杂的冶金反应,导致近焊缝中心区域产生较不均匀的组织和成分分布. 而距离焊缝中心比较远区域,由于晶粒只受到了较小的焊接热影响,该区域的组织与母材相差不大. 近焊缝侧为时效区,主要为完全再结晶组织;近母材侧的过时效区的焊接热循环温度介于强化元素Mg,Zn的固溶温度与时效温度间,因此强化相未充分溶解[22-24].
-
图4为7075铝合金母材和焊接接头的应力−应变曲线,表2为其力学性能参数. 从表2可以看出,两种焊接接头的抗拉强度和断后伸长率差别不大,并且均低于7075铝合金母材,但双面焊接头试样有两次断裂过程发生. 7075铝合金母材试样断裂时有颈缩现象,而单/双面焊接头断裂于焊缝处,无明显颈缩现象,沿着熔合线附近的热影响区断裂,并且在断口有明显的撕裂棱. 产生这种现象的主要原因有如下几个:首先,热影响区的晶粒为细长柱状晶,在拉应力下易发生沿晶断裂. 其次,7075铝合金母材中的强化相涉及的Mg,Zn沸点较低,焊接过程中容易烧损,而采用的ER5356焊丝中Zn元素含量约为0.05%[25],远远低于7075铝合金母材,这导致焊缝熔池中的Zn元素含量降低,使焊接接头的硬度大幅度降低. 此外,热影响区的温度高于7075铝合金母材时效热处理温度,但低于其固溶温度,使强化相从7075铝合金母材中析出,导致接头软化.
表 2 7075铝合金和焊接接头的力学性能
Table 2. Mechanical properties of 7075 aluminum alloy and welded joints
材料 抗拉强度
Rm/MPa规定塑性延伸强度
Rp0.2/MPa焊接接头
系数φ断后伸长率
A(%)断裂位置 母材 550 447 — 17.0 母材 单面焊接头 260 191 0.61 2.0 焊缝 双面焊接头 250 177 0.58 2.0 焊缝 图5为7075铝合金母材与单/双面焊接接头的断口形貌结果. 从图5可以看出,7075铝合金断口表面呈明显的凹凸状,塑性变形明显,形成解理台阶. 而单/双面焊接头的断口基本上无塑性变形特点,断口处的解理面和韧窝表明焊接接头具有较差的塑性. 但需要注意的是,ER5356焊丝中的主要元素Si在焊缝中形成低熔点共晶,产生“自愈合”防止裂纹的作用,而焊接冶金过程中产生的脆性相使接头在拉应力作用下裂纹沿着解理面和相界面迅速开裂[25-26].
图 5 7075铝合金及焊接接头断口形貌
Figure 5. Fracture morphology of 7075 aluminum alloy and welded joints. (a) 7075 aluminum alloy base metal; (b) single-side welded joint; (c) double-side welded joint
上述结果表明,单/双面焊接头的断裂部位均位于焊缝区内. 低强匹配的ER5356焊丝以及焊缝中心组织成分不均导致焊缝区是焊接接头最薄弱的部位. 单/双面焊接头的拉伸断口呈准解理+韧窝的混合断裂模式.
-
由于7075铝合金MIG焊接头不同区域的微观组织和成分不同,在NaCl溶液内接头不同区域处会出现差异化腐蚀状态. 从焊缝中心由近及远不同位置处(D0,D1,D2,D3,各点间距为11 mm ± 2 mm)的动电位极化曲线及其拟合参数如图6和表3所示.
图 6 在3.5%NaCl溶液中试样不同位置的动电位极化曲线
Figure 6. Potential polarization curve at different positions of the specimen in 3.5% NaCl solution. (a) single-side welded joint; (b) double-side welded joint
表 3 试样不同位置的动电位极化曲线拟合参数
Table 3. Fitted parameters for potential polarization curve at different positions
焊接类型 位置 腐蚀电流密度
Jcorr/(10−6A·cm−2)腐蚀电位
Ecorr/V单面焊 D0 3.33 −1.22 D1 2.71 −1.20 D2 3.30 −1.15 D3 6.66 −1.19 双面焊 D0 3.15 −1.19 D1 2.80 −1.15 D2 2.49 −1.12 D3 5.96 −1.17 从图6可以看出,MIG焊工艺下7075铝合金的焊缝中心D0处与其它3处动电位极化曲线形状略有不同,表明了受焊丝成分影响较大的焊缝区腐蚀机理的不同. D1,D2和D3处动电位极化曲线形状相似,说明除焊缝外,7075铝合金焊接接头在NaCl溶液中有着类似的腐蚀过程. 由表3可以看出,无论是单面焊还是双面焊接头近缝区(D1和D2处)的腐蚀电位Ecorr均高于焊缝D0处,比远离焊缝的D3处高或接近. 同时,腐蚀电流密度Jcorr均低于焊缝D0和远离焊缝的D3处. 与单面焊相应位置处相比,双面焊接头Ecorr偏正,Jcorr较小,表明其耐蚀性较好. 从焊接材料的角度出发,尽管ER5356焊丝中合金元素Ti的存在有利于形成Al3Ti金属间化合物,作为异质形核的核心,起细化晶粒的作用,在一定程度上有利于提高焊缝区域的耐蚀性[25]. 然而,焊接过程中复杂冶金过程导致焊缝区的成分和组织不均匀性,却不利于耐蚀性的提升.
图7为单/双面MIG焊距焊缝不同位置处的电化学阻抗图谱,其拟合结果如表4所示. 单面焊容抗弧的大小表明耐蚀性由高到低依次为:D0>D1>D2>D3. 然而,双面焊除焊缝外,这种区别并不是太明显,这与双面焊时热输入及其对应力和组织的影响有关. 此外,单面焊焊缝处的极化电阻Rp为19 290 Ω,双面焊焊缝处的Rp为13 537 Ω,这说明双面焊焊缝的耐蚀性优于单面焊焊缝,与动电位极化结果一致.
图 7 距铝合金焊缝中心不同位置处的阻抗图谱及等效电路
Figure 7. Impedance spectrum and equivalent circuit for different positions from the center of the weld. (a) single-side welded joint; (b) double-side welded joint; (c) equivalent circuit
表 4 单/双面焊接头相应位置处的EIS拟合结果
Table 4. Fitted EIS results for corresponding positions of the single-side and double-side welded joints
焊接
类型位置 溶液电阻
Rs/Ω极化电阻
Rp/Ω双电层电容
C/(10−6µF)单面焊 D0 195.92 19290 3.20 D1 446.98 8118.8 2.57 D2 185.04 5152.2 3.75 D3 273.59 4364.4 1.33 双面焊 D0 186.75 13537 4.73 D1 353.76 7624.3 1.57 D2 341.02 7540.2 3.84 D3 158.51 6842.1 1.35 图8为单/双面焊7075铝合金焊接接头距焊缝中心不同位置处的腐蚀形貌. 从图8可以看出,焊接接头各处均发生了不同程度的电化学腐蚀. 在腐蚀性的含氯电解液中,铝合金基体与其强化相之间存在的电位差,组织和成分不均匀性都会导致腐蚀失效[27]. 对于单面焊试样,图8a所示焊缝D0处腐蚀后表面呈现极其不均匀的腐蚀情况,继试样表面电化学反应后出现腐蚀介质的内点蚀现象,试样由表及里不断受到破坏,向深度方向发展,蚀坑尺寸不断变大,发生剥落起皮,进入剥落腐蚀阶段. 远离焊缝的D1(图8b)和D2区域(图8c)的耐蚀性较高. 双面焊的焊接接头的耐蚀性稍优于单面焊,这与双面焊多次热输入对其整体组织成分均匀性的提高和组织细化有关. 而对于距离焊缝不同位置处的腐蚀程度的变化趋势,双面焊和单面焊接头腐蚀情况基本一致.
图 8 单面焊和双面焊7075铝合金焊接接头不同位置处的腐蚀形貌
Figure 8. Corrosion morphology of 7075 aluminum alloy joint at different positions. (a) weld of single-side welding; (b) fusion zone of single-side welding; (c) heat affected zone of single-side welding; (d) base material of single-side welding; (e) weld of double-side welding; (f) fusion zone of double-side welding; (g) heat affected zone of double-side welding; (h) base material of double-side welding
-
图9为不同拉应力下7075铝合金单/双面MIG焊焊缝在3.5%NaCl溶液中的动电位极化曲线. 图中4条极化曲线的阴极极化曲线形状类似,但在较大力的作用下阳极极化过程不稳定. 在150 N较小拉力下,试样由活化极化形成均匀的钝化膜,稳态钝化. 然而,随着拉应力的增加,这种稳态钝化很难建立,薄弱位置处的钝化膜优先破裂. 在较大的拉应力作用下,形成钝化膜的快速形成—破坏的循环,导致多个不稳定的阳极极化过程的发生.
图 9 焊缝在不同拉应力下的动电位极化曲线
Figure 9. Potentiodynamic polarization curves of the weld under different tensile stress. (a) single-side welding; (b) double-side welding
施加的应力加速了铝合金/腐蚀溶液界面形成电双层,并且施加的应力越大,形成电双层的时间越短,加速了腐蚀过程的发生[28-29].
图10为不同拉应力作用下单/双面焊接接头的腐蚀形貌. 对于单面焊,随着拉应力的增加,表面腐蚀程度逐渐加大,由图10a和图10b所示的局部不均匀腐蚀逐渐变为如图10c和图10d中较均匀的大面积腐蚀,这与腐蚀过程中在拉应力耦合作用下表面氧化膜遭到破坏有关. 双面焊接头的表面腐蚀程度随着拉应力的增加也有类似变化趋势. 当拉应力较大时,表面破坏及腐蚀程度均增大. 与图8无外加拉应力作用的腐蚀形貌相比,有外加拉应力时的表面腐蚀更加严重.图10i为250 N拉应力作用下双面焊铝合金焊件的腐蚀产物能谱分析. 可以看出,腐蚀产物富氧,主要为铝的氧化物,表明表面发生吸氧腐蚀.
图 10 铝合金焊接试样在不同拉应力下的腐蚀形貌
Figure 10. Corrosion morphology of the aluminum alloy weldment under different tensile stresses. (a) single-side welding 150 N; (b) single-side welding 250 N; (c) single-side welding 350 N; (d) single-side welding 450 N; (e) double-side welding 150 N; (f) double-side welding 250 N; (g) double-side welding 350 N; (h) double-side welding 450 N; (i) EDS pattern for the marked zone
-
(1)与单面焊相比,7075铝合金双面焊焊缝的金相组织更加均匀,晶粒更细化,但力学性能相当,均断裂于焊缝处. 单面焊接头的抗拉强度为260 MPa,断后伸长率2.0%;而双面焊接头的抗拉强度250 MPa,断后伸长率2.0%.
(2)单、双面焊接接头近缝区的耐蚀性优于焊缝区和远离焊缝的母材处,双面焊提高了焊接接头的耐蚀性,主要原因是双面焊的两次热输入使组织均匀化并使晶粒细化.
(3)外加拉应力使试样处于腐蚀环境和应力的耦合作用下,导致动电位极化过程中发生多个阳极极化过程,这是由于外加应力不断破坏铝合金表面形成的氧化膜,加快电化学反应,使腐蚀过程不再稳定.
Microstructure, mechanical properties and stress dependence of corrosion resistance for MIG welded 7075 aluminum joint
-
摘要: 作为航空航天和轨道交通领域有竞争力的一类高强高硬铝合金,7系铝合金的焊接及其性能研究引发关注. 以单面焊和双面焊7075铝合金为研究对象,对接头的金相组织、力学性能进行研究,并对其在不同应力下3.5% NaCl溶液中的耐蚀性进行对比分析. 结果表明,与单面焊工艺相比,双面MIG焊接7075铝合金焊缝的金相组织更均匀细小,但两者力学性能差别不大,断裂均发生于焊缝处. 单/双面MIG焊接接头近缝区的耐蚀性优于焊缝和远离焊缝区. 同时,双面焊提高了接头的耐蚀性. 在外加应力的作用下,试样的稳态钝化活化过程被破坏,动电位极化过程中发生了多个阳极极化过程,使腐蚀过程受应力、腐蚀电位等多种因素的共同作用.Abstract: As a competitive high-strength and high-hardness aluminum alloy in field of aerospace and rail transit, 7 series aluminum alloy and its welding performance have attracted attention. The microstructure and mechanical properties of single-side and double-side welded 7075 aluminum alloy joints were studied, and the corrosion resistance of the joints under different stresses in 3.5% NaCl solution was compared and analyzed. The result shows that, double-side MIG welding of 7075 aluminum alloy brings about more uniform microstructure and finer grain, but equivalent mechanical properties with the fracture at the weld in comparison with single-side MIG welding. The corrosion resistance of the near-weld zone for both single-side and double-side welding is higher than that of the weld and far away from the weld. In addition, double-side welding improves the corrosion resistance of the joint. Under the action of the applied stress, the steady-state passivation and activation processes of the specimen are destroyed, which results in the multiple anodic polarization actions in the process of potentiodynamic polarization. The corrosion process is thus affected by the coupling effects of stress, corrosion potential and other factors.
-
Key words:
- aluminum alloy /
- microstructure /
- mechanical property /
- corrosion /
- fusion welding /
- stress
-
图 8 单面焊和双面焊7075铝合金焊接接头不同位置处的腐蚀形貌
Figure 8. Corrosion morphology of 7075 aluminum alloy joint at different positions. (a) weld of single-side welding; (b) fusion zone of single-side welding; (c) heat affected zone of single-side welding; (d) base material of single-side welding; (e) weld of double-side welding; (f) fusion zone of double-side welding; (g) heat affected zone of double-side welding; (h) base material of double-side welding
图 10 铝合金焊接试样在不同拉应力下的腐蚀形貌
Figure 10. Corrosion morphology of the aluminum alloy weldment under different tensile stresses. (a) single-side welding 150 N; (b) single-side welding 250 N; (c) single-side welding 350 N; (d) single-side welding 450 N; (e) double-side welding 150 N; (f) double-side welding 250 N; (g) double-side welding 350 N; (h) double-side welding 450 N; (i) EDS pattern for the marked zone
表 1 焊接工艺参数
Table 1. Welding process parameters
焊接
方法焊接电流
I/A电弧电压
U/V焊接速度
v/(cm·min−1)气体流量
Q/(L·min−1)单面焊 118 20.8 42 ~ 47.6 20 双面焊 130 21.6 42 ~ 47.6 20 表 2 7075铝合金和焊接接头的力学性能
Table 2. Mechanical properties of 7075 aluminum alloy and welded joints
材料 抗拉强度
Rm/MPa规定塑性延伸强度
Rp0.2/MPa焊接接头
系数φ断后伸长率
A(%)断裂位置 母材 550 447 — 17.0 母材 单面焊接头 260 191 0.61 2.0 焊缝 双面焊接头 250 177 0.58 2.0 焊缝 表 3 试样不同位置的动电位极化曲线拟合参数
Table 3. Fitted parameters for potential polarization curve at different positions
焊接类型 位置 腐蚀电流密度
Jcorr/(10−6A·cm−2)腐蚀电位
Ecorr/V单面焊 D0 3.33 −1.22 D1 2.71 −1.20 D2 3.30 −1.15 D3 6.66 −1.19 双面焊 D0 3.15 −1.19 D1 2.80 −1.15 D2 2.49 −1.12 D3 5.96 −1.17 表 4 单/双面焊接头相应位置处的EIS拟合结果
Table 4. Fitted EIS results for corresponding positions of the single-side and double-side welded joints
焊接
类型位置 溶液电阻
Rs/Ω极化电阻
Rp/Ω双电层电容
C/(10−6µF)单面焊 D0 195.92 19290 3.20 D1 446.98 8118.8 2.57 D2 185.04 5152.2 3.75 D3 273.59 4364.4 1.33 双面焊 D0 186.75 13537 4.73 D1 353.76 7624.3 1.57 D2 341.02 7540.2 3.84 D3 158.51 6842.1 1.35 -
[1] 丁亚茹, 陈芙蓉, 杨帆, 等. 响应面法分析7075铝合金激光焊接参数对焊接质量的影响规律[J]. 材料导报, 2021, 35(2): 2103 − 2108, 2114. doi: 10.11896/cldb.20070158 Ding Yaru, Chen Furong, Yang Fan, et al. Analyzing the influence of laser welding parameters on the welding quality of 7075 aluminum alloy by response surface methodology[J]. Materials Reports, 2021, 35(2): 2103 − 2108, 2114. doi: 10.11896/cldb.20070158 [2] 熊斯, 唐鑫, 王春霞, 等. 焊后热处理对Al-Mg-Zn(-Sc-Zr)合金焊丝焊接7075铝合金焊接接头组织和性能的影响[J]. 材料导报, 2019, 33(8): 2720 − 2724. Xiong Si, Tang Xin, Wang Chunxia, et al. Effect of post-weld heat treatment on microstructure and mechanical properties of 7075 alloy welded by Al-Mg-Zn (-Sc-Zr) alloy welding wire[J]. Materials Reports, 2019, 33(8): 2720 − 2724. [3] 张颖, 林高用, 周英, 等. LC52铝合金抗剥落腐蚀性能研究[J]. 铝加工, 2003(4): 50 − 54. doi: 10.3969/j.issn.1005-4898.2003.04.014 Zhang Ying, Lin Gaoyong, Zhou Ying, et al. Study on exfoliation corrosion resistance property of LC52 aluminum alloy[J]. Aluminum Fabrication, 2003(4): 50 − 54. doi: 10.3969/j.issn.1005-4898.2003.04.014 [4] 林高用, 张颖, 杨立斌, 等. 时效制度对LC52铝合金组织与性能的影响[J]. 金属热处理, 2004, 29(10): 32 − 35. doi: 10.3969/j.issn.0254-6051.2004.10.012 Lin Gaoyong, Zhang Ying, Yang Libin, et al. Effects of ageing treatment on structure and properties of LC52 aluminum alloy[J]. Heat Treatment of Metals, 2004, 29(10): 32 − 35. doi: 10.3969/j.issn.0254-6051.2004.10.012 [5] Kumar P V, Reddy G M, Rao K S. Microstructure, mechanical and corrosion behavior of high strength AA7075 aluminium alloy friction stir welds–effect of post weld heat treatment[J]. Defence Technology, 2015, 11(4): 362 − 369. doi: 10.1016/j.dt.2015.04.003 [6] Holroyd N J H, Scamans G M. Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments[J]. Metallurgical and Materials Transactions A, 2013, 44: 1230 − 1253. doi: 10.1007/s11661-012-1528-3 [7] Qi Xing, Jin Jirong, Dai Chunli, et al. A study on the susceptibility to SCC of 7050 aluminum alloy by DCB specimens[J]. Materials, 2016, 9(11): 884. doi: 10.3390/ma9110884 [8] 周鹏展, 钟掘, 贺地求. LC52厚板搅拌摩擦焊组织性能分析[J]. 材料科学与工程学报, 2006, 24,(3): 429 − 431, 435. doi: 10.3969/j.issn.1673-2812.2006.03.027 Zhou Pengzhan, Zhong Jue, He Diqiu. Microstructure and properties in friction-stir welds of LC52 slab[J]. Journal of Materials Science & Engineering, 2006, 24,(3): 429 − 431, 435. doi: 10.3969/j.issn.1673-2812.2006.03.027 [9] 郑强, 陈康华, 黄兰萍, 等. 高温预析出和固溶温度对7A52合金应力腐蚀开裂的影响[J]. 金属热处理, 2005, 30(7): 14 − 17. doi: 10.3969/j.issn.0254-6051.2005.07.005 Zheng Qiang, Chen Kanghua, Huang Lanping, et al. Effect of high temperature pre-precipitation and solution temperature on SCC of 7A52 alloy[J]. Heat Treatment of Metals, 2005, 30(7): 14 − 17. doi: 10.3969/j.issn.0254-6051.2005.07.005 [10] 闫永贵, 马力, 曾红杰, 等. 7A52铝合金的应力腐蚀性能研究[J]. 腐蚀科学与防护技术, 2009, 21(2): 119 − 121. doi: 10.3969/j.issn.1002-6495.2009.02.014 Yan Yonggui, Ma Li, Zeng Hongjie, et al. Stress cracking corrosion of 7A52 aluminum alloy[J]. Corrosion Science and Protection Technology, 2009, 21(2): 119 − 121. doi: 10.3969/j.issn.1002-6495.2009.02.014 [11] 张华, 郭启龙, 赵常宇, 等. 双级时效对7050-T7451铝合金搅拌摩擦焊组织及应力腐蚀敏感性的影响[J]. 焊接学报, 2020, 41(6): 1 − 5. doi: 10.12073/j.hjxb.20190513001 Zhang Hua, Guo Qilong, Zhao Changyu, et al. Influence of two-step aging on structure and stress corrosion sensitivity of friction stir welded 7050-T7451 aluminum alloys[J]. Transactions of the China Welding Institution, 2020, 41(6): 1 − 5. doi: 10.12073/j.hjxb.20190513001 [12] Shen L, Chen H, Che X L, et al. Stress corrosion cracking behavior of laser-MIG hybrid welded 7B05-T5 aluminum alloy[J]. Corrosion Science, 2020, 165: 108417. doi: 10.1016/j.corsci.2019.108417 [13] Gou G Q, Chen J, Wang Z R, et al. Stress corrosion cracking behavior of 4.19%Zn-1.34%Mg (A7N01S-T5) aluminum alloy welded joints[J]. Corrosion, 2016, 72(9): 1133 − 1145. doi: 10.5006/2043 [14] Marlaud T, Malki B, Henon C, et al. Relationship between alloy composition, microstructure and exfoliation corrosion in Al-Zn-Mg-Cu alloys[J]. Corrosion Science, 2011, 53(10): 3139 − 3149. doi: 10.1016/j.corsci.2011.05.057 [15] 李智, 吕胜利, 李逸飞. 应力水平对2219铝合金腐蚀损伤力学性能的影响[J]. 山东科学, 2019, 32(3): 48 − 56. doi: 10.3976/j.issn.1002-4026.2019.03.008 Li Zhi, Lü Shengli, Li Yifei. Effect of stress level on mechanical properties of 2219 aluminum alloy caused by stress corrosion damage[J]. Shandong Science, 2019, 32(3): 48 − 56. doi: 10.3976/j.issn.1002-4026.2019.03.008 [16] 李春岭. 7075铝合金应力腐蚀开裂机理研究[D]. 镇江: 江苏科技大学, 2014. Li Chunling. The study of 7075 aluminum alloy to stress corrosion cracking mechanism[D]. Zhenjiang: Jiangsu University of Science and Technology, 2014. [17] Wang Liwei, Liang Jianming, Li Han, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl−[J]. Corrosion Science, 2021, 178: 109076-1-19. doi: 10.1016/j.corsci.2020.109076 [18] 张春芝, 陈姝, 孟庆旺, 等. 一种在应力耦合作用下进行电化学腐蚀的实验方法: CN106053325 B [P]. 2019-05-21. Zhang Chunzhi, Chen Shu, Meng Qingwang, et al. An experimental method for electrochemical corrosion under stress coupling: CN106053325 B[P]. 2019-05-21. [19] Dudzik K. Influence of joining method for hardness distribution in joints of AlZn5Mgl alloy[J]. Journal of KONES Powertrain and Transport, 2010, 17(4): 137 − 141. [20] 戴军. 稀土镁合金NZ30K激光焊接及接头性能改善研究[D]. 上海: 上海交通大学, 2012. Dai Jun. Research on laser welded Mg-rare earth alloy NZ30K and improvement of joint properties[D]. Shanghai: Shanghai Jiao Tong University, 2012. [21] Zhang Y M, Pan C, Male A T. Improved microstructure and properties of 6061 aluminum alloy weldments using a double-sided arc welding process[J]. Metallurgical and Materials Transactions A, 2000, 31(10): 2537 − 2543. doi: 10.1007/s11661-000-0198-8 [22] 王立楠. 7A52铝合金MIG焊接力学性能及腐蚀行为研究[D]. 长春: 长春工业大学, 2017. Wang Linan. Research of 7A52 aluminum alloy MIG welding mechanical properties and corrosion behavior[D]. Changchun: Changchun University of Technology, 2017. [23] Ares A E, Gueijman S F, Caram R, et al. Analysis of solidification parameters during solidification of lead and aluminum base alloys[J]. Journal of Crystal Green, 2005, 275(1): 319 − 327. [24] 易杰. 铝合金双脉冲MIG焊接过程中焊缝组织和性能研究[D]. 长沙: 湖南大学, 2015. Yi Jie. The study of mechanical property and microstructure evolution of Al alloy weld in double-pulsed MIG welding[D]. Changsha: Hunan University, 2015. [25] 黄敏, 刘铭, 张坤, 等. 铝及铝合金焊丝的研究与发展现状[J]. 有色金属加工, 2008, 37(2): 9 − 12. doi: 10.3969/j.issn.1671-6795.2008.02.003 Huang Min, Liu Ming, Zhang Kun, et al. Development of aluminum alloy welding wires[J]. Nonferrous Metals Processing, 2008, 37(2): 9 − 12. doi: 10.3969/j.issn.1671-6795.2008.02.003 [26] 刘政军, 何偲倬, 苏允海, 等. 焊接材料对7075铝合金焊接性及焊缝组织的影响[J]. 沈阳工业大学学报, 2018, 40(2): 139 − 144. doi: 10.7688/j.issn.1000-1646.2018.02.04 Liu Zhengjun, He Sizhuo, Su Yunhai, et al. Influence of different welding materials on weldability and weld bead microstructure of 7075 aluminum alloy[J]. Journal of Shenyang University of Technology, 2018, 40(2): 139 − 144. doi: 10.7688/j.issn.1000-1646.2018.02.04 [27] 刘增威. SECM对7075铝合金在NaCl溶液中的电化学腐蚀行为研究[D]. 赣州: 江西理工大学, 2017. Liu Zengwei. Study on electrochemical corrosion behavior of 7075 aluminum alloy in NaCl solution with SECM[D]. Ganzhou: Jiangxi University of Science and Technology, 2017. [28] Paradowska A M, Price J W H, Ibrahim R, et al. The effect of heat input on residual stress distribution of steel welds measured by neutron diffraction[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2006, 17(1−2): 385 − 388. [29] Liu X F, Zhan J, Liu Q J. The influence of tensile stress on electrochemical noise from aluminum alloy in chloride media[J]. Corrosion Science, 2009, 51(6): 1460 − 1466. -