Spectral analysis of A-TIG welding arc with fluorides activating flux
-
摘要: 氟化物作为最为常见的A-TIG焊活性剂配方之一,在实际焊接生产中已得到了广泛的应用,然而其对电弧行为的影响机制目前仍存在争议. 为此,利用光谱诊断方法对涂覆氟化物活性剂的A-TIG焊电弧空域光谱分布进行了研究,分析了活性剂粒子、氩、铁粒子在电弧空域中的分布特征,并结合Boltzmann图法计算了电弧电子温度. 结果表明,氟化物活性剂粒子主要分布于弧柱中心区域;氟化物的引入能够使电弧中ArⅡ谱线辐射强度降低同时增强FeⅡ谱线辐射强度;氟化物对不同电弧空间区域的电子温度作用并不一致,其中使阳极区附近电弧温度大幅提升但对其它区域电弧温度的影响很小.Abstract: As one of the most common A-TIG welding activating fluxes, fluorides have been widely used in actual welding production, but its influence mechanism on arc behavior is still controversial. To this end, the spectral diagnosis method was used to study the spatial spectral distribution of the A-TIG welding arc coated with fluoride flux, the distribution characteristics of flux particles, argon and iron particles in the arc space were analyzed, and the Boltzmann diagram method was used to calculate arc electron temperature. The experimental results shown that the flux particles are mainly distributed in the central area of the arc column; fluoride can reduce the intensity of the ArⅡspectrum in the arc and increase the intensity of the FeⅡspectrum; the effect of fluoride on the temperature of different arc regions is not consistent. Among them, the arc temperature near the anode area is greatly increased, but the effect on the arc temperature in other areas is small.
-
Keywords:
- A-TIG /
- fluorides /
- spectrum diagnosis /
- arc temperature
-
-
表 1 焊接参数
Table 1 Experimental weld parameters
焊接电流
I1/A电弧弧长
L/mm焊接速度
v1/(mm·s−1)保护气流量
Q/(L·min−1)100 3 0 10 表 2 谱线特征参数
Table 2 characteristic parameter of spectral line
波长
λ/mm特征强度
I跃迁几率
A(107)统计权重
g激发态能量
E/eV458.98 2810 6.64 6 21.127 460.95 3232 7.89 8 21.143 465.79 3030 8.92 2 19.801 472.68 4278 5.80 4 19.762 473.59 4929 5.80 4 19.2611 -
[1] Graczyk H, Lewinski N, Zhao J, et al. Increase in oxidative stress levels following welding fume inhalation: a controlled human exposure study[J]. Particle & Fibre Toxicology, 2015, 13(1): 31.
[2] Pandya D, Badgujar A, Ghetiya N. A novel perception toward welding of stainless steel by activated TIG welding: a review[J]. Materials and Manufacturing Processes, 2020(3): 1 − 27.
[3] Dey H C, Albert S K, Bhaduri A K, et al. Activated flux TIG welding of titanium[J]. Welding in the World, 2013, 57(6): 903 − 912. doi: 10.1007/s40194-013-0084-9
[4] Nayee S G, Badheka V J. Effect of oxide-based fluxes on mechanical and metallurgical properties of dissimilar activating flux assisted-tungsten inert gas welds[J]. Journal of Manufacturing Processes, 2014, 16(1): 137 − 143. doi: 10.1016/j.jmapro.2013.11.001
[5] Li D, Lu S, Li D, et al. Principles giving high penetration under the double shielded TIG process[J]. Journal of Materials Science & Technology, 2014, 30(2): 172 − 178.
[6] 杜贤昌, 王毅, 郭淑兰, 等. AZ31B镁合金A-TIG焊活性剂成分的均匀设计与优化[J]. 焊接学报, 2014, 35(4): 67 − 70. Du Xianchang, Wang Yi, Guo Shulan, et al. Uniform design and optimization of active flux for A-TIG welding of AZ31B magnesium alloy[J]. Transactions of the China Welding Institution, 2014, 35(4): 67 − 70.
[7] 高晓刚, 董俊慧, 韩旭, 等. 氟化物A-TIG焊接Ti6Al4V的电弧行为[J]. 焊接学报, 2017, 38(10): 6 − 10. doi: 10.12073/j.hjxb.20161026007 Gao Xiaogang, Dong Junhui, Han Xu, et al. Arc behavior of fluoride effects in the A-TIG welding of Ti6Al4V[J]. Transactions of the China Welding Institution, 2017, 38(10): 6 − 10. doi: 10.12073/j.hjxb.20161026007
[8] Wang L, Qiao J, Chen J. The mechanism of effect of flux bands on the arc behavior in flux bands constricting arc welding process[J]. Materials, 2020, 13(7): 1635 − 1652.
[9] Ding X, Li H, Yang L, et al. Numerical analysis of arc characteristics in two-electrode GTAW[J]. The International Journal of Advanced Manufacturing Technology, 2013, 70(9): 1867 − 1874.
[10] 董文超, 陆善平, 李殿中, 等. 焊接电弧与活性组元对TIG焊熔池形貌影响的数值模拟[J]. 焊接学报, 2009, 30(11): 49 − 52. doi: 10.3321/j.issn:0253-360X.2009.11.013 Dong Wenchao, Lu Shanping, Li Dianzhong, et al. Numerical simulation of the influence of welding arc and active component on the morphology of TIG welding pool[J]. Transactions of the China Welding Institution, 2009, 30(11): 49 − 52. doi: 10.3321/j.issn:0253-360X.2009.11.013
[11] Xiao X, Hua X, Li F, et al. A modified fowler–milne method for monochromatic image analysis in multi-element arc plasma welding[J]. Journal of Materials Processing Technology, 2014, 214(11): 2770 − 2776. doi: 10.1016/j.jmatprotec.2014.05.026
[12] 刘莹, 杨立军, 何天玺, 等. 药芯焊丝TIG焊电弧特性的光谱分析[J]. 光谱学与光谱分析, 2017, 37(7): 2171 − 2176. Liu Ying, Yang Lijun, He Tianxi, et al. The spectral analysis of tig welding filled with flux-cored wire[J]. Spectroscopy and Spectroscopy Analysis, 2017, 37(7): 2171 − 2176.
[13] 刘凤尧, 杨春利, 林三宝, 等. 活性化TIG电弧光谱分布的特征[J]. 金属学报, 2003, 39(8): 875 − 878. doi: 10.3321/j.issn:0412-1961.2003.08.019 Liu Fengyao, Yang Chunli, Lin Sanbao, et al. Spectral distribution characteristics of A-TIG welding arc[J]. Acta Metallurgica Sinica, 2003, 39(8): 875 − 878. doi: 10.3321/j.issn:0412-1961.2003.08.019
[14] Howse D S, Lucas W. Nvestigation into arc constriction by active fluxes for tungsten inert gas welding[J]. Science and Technology of Welding & Joining, 2000, 5(3): 189 − 193.