高级检索

微弧等离子增材制造NiCr合金的分子动力学数值模拟

袁晓静, 郭晓辉, 关宁, 王旭平, 占军, 孙磊

袁晓静, 郭晓辉, 关宁, 王旭平, 占军, 孙磊. 微弧等离子增材制造NiCr合金的分子动力学数值模拟[J]. 焊接学报, 2021, 42(8): 25-32. DOI: 10.12073/j.hjxb.20210131001
引用本文: 袁晓静, 郭晓辉, 关宁, 王旭平, 占军, 孙磊. 微弧等离子增材制造NiCr合金的分子动力学数值模拟[J]. 焊接学报, 2021, 42(8): 25-32. DOI: 10.12073/j.hjxb.20210131001
YUAN Xiaojing, GUO Xiaohui, GUAN Ning, WANG Xuping, ZHAN Jun, SUN Lei. Molecular dynamics simulation of NiCr alloy fabricated by micro-plasma additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 25-32. DOI: 10.12073/j.hjxb.20210131001
Citation: YUAN Xiaojing, GUO Xiaohui, GUAN Ning, WANG Xuping, ZHAN Jun, SUN Lei. Molecular dynamics simulation of NiCr alloy fabricated by micro-plasma additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 25-32. DOI: 10.12073/j.hjxb.20210131001

微弧等离子增材制造NiCr合金的分子动力学数值模拟

基金项目: 国家自然科学基金资助项目(51405497)
详细信息
    作者简介:

    袁晓静,博士,副教授,博士研究生导师;主要从事装备综合防护与增材制造技术; E-mail:yuanxj2003@163.com

  • 中图分类号: TG 404

Molecular dynamics simulation of NiCr alloy fabricated by micro-plasma additive manufacturing

  • 摘要: 微弧等离子增材制造NiCr合金快速凝固过程对增材制造的结构件微观组织结构性能具有重要影响. 采用分子动力学对微弧等离子增材制造NiCr合金构件生长过程中温度场变化及等轴晶生长过程进行模拟. 结果表明,冷却速率为3.38 K/ps和0.675 K/ps时,Ni-Cr体系呈现非晶凝固,0.077 5 K/ps冷却速率下,Ni-Cr体系自发形核长大,实现等轴晶凝固结晶过程,这为微弧等离子增材制造组织演变研究提供了理论支撑.
    Abstract: The rapid solidification process of NiCr alloy produced by micro arc plasma has an important influence on the microstructure and properties of structural parts manufactured by additive. In this paper, molecular dynamics (MD) was used to simulate the temperature field and the growth of equiaxed grains in the process of micro arc plasma additive forming NiCr alloy components. The results show that the NiCr alloy exhibits amorphous solidification at cooling rates of 3.38 K/ps and 0.675 K/ps, and the NiCr alloy spontaneously nucleates and grows at cooling rates of 0.077 5 K/ps, realizing equiaxed solidification and crystallization. The simulation results are in good agreement with the phase field method and the electron micrographs of equiaxed region, which provides a theoretical basis for the study of microstructure evolution of NiCr alloy fabricated by micro arc plasma additive manufacturing.
  • 图  1   建立的Ni-Cr合金模型(绿色:体心立方;蓝色:面心立方;红色:密排六方;橙色:准晶体;灰色:其它)

    Figure  1.   Established Ni-Cr alloy model (green: FCC; blue: BCC; red: HCP; orange: ICO; gray: other)

    图  2   体系能量变化图

    Figure  2.   Energy change diagram of the system. (a) total potential energy of the system; (b) total energy of the system

    图  3   扫描量热法(DSC)测量合金熔点

    Figure  3.   Scanning calorimetry (DSC) measurement of alloy melting point

    图  4   熔化过程可视化分析及径向分布函数变化过程(绿色:面心立方;蓝色:体心立方;红色:密排六方;橙色:准晶体;灰色:其他)

    Figure  4.   Visual analysis of the melting process and the change process of the radial distribution function (green: FCC; blue: BCC; red: HCP; orange: ICO; gray: other). (a) visual analysis at 300 K; (b) visual analysis at 900 K; (c) visual analysis at 1 250 K; (d) visual analysis at 1 500 K; (e) visual analysis at 1 635 K; (f) radial distribution function

    图  5   不同冷却速率下体系势能、原子均方位移及温度变化

    Figure  5.   System potential energy, atomic mean square displacement and temperature changes under different cooling rates. (a) potential energy of the system; (b) mean square displacement of atoms; (c) temperature of the system

    图  6   不同冷却速度下的RDF曲线及可视化图

    Figure  6.   RDF curves and visualization diagrams at different cooling rates. (a) RDF curves of 3.38 K/ps; (b) RDF curves of 0.675 K/ps; (c) visualized graphs at 3.38 K/ps; (d) visualized graphs at 0.675 K/ps

    图  7   冷却速率下的体系能量、MSD及RDF曲线

    Figure  7.   System energy, MSD and RDF curves under cooling rate. (a) system energy; (b) MSD curve; (c) RDF curve

    图  8   不同冷却速率下的公共近邻域分析图

    Figure  8.   Common neighborhood diagram under different cooling rates. (a) the cooling rate is 3.38 K/ps; (b) the cooling rate is 0.675 K/ps; (c) the cooling rate is 0.0775 K/ps

    图  9   凝固结晶过程的可视化分析

    Figure  9.   Visual analysis of solidification and crystallization process. (a) 0 ps; (b) 9 400 s; (c) 9 800 ps; (d) 20 000 ps

    图  10   分子动力学模拟与等轴晶区电镜照片对比图

    Figure  10.   Comparison of molecular dynamics simulation and electron microscope photos of equiaxed crystal regions. (a) polycrystalline model; (b) polycrystalline solidification simulation results; (c) top region morphology; (d) equiaxed crystal structure morphology

    表  1   单晶生长条件

    Table  1   Single crystal growth conditions

    类 别初始温度T0/K终止温度T1/K步长f/ps步骤温变速度v/(K·ps−1)输出步长
    熔点分析30025000.0023 × 105升温:5.51 000
    凝固演变

    2 5003000.0022 × 105降温:0.6751 000
    1 6503000.0021 × 106降温:0.077 51 000
    1 6501000.0022 × 107降温:3.381 000
    下载: 导出CSV
  • [1] 高钰璧, 丁雨田, 孟斌, 等. Inconel 625合金中析出相演变研究进展[J]. 材料工程, 2020, 48(5): 13 − 22. doi: 10.11868/j.issn.1001-4381.2018.000424

    Gao Yubi, Ding Yutian, Meng Bin, et al. Research progress in evolution of precipitated phases in Inconel 625 super alloy[J]. Journal of Materials Engineering, 2020, 48(5): 13 − 22. doi: 10.11868/j.issn.1001-4381.2018.000424

    [2]

    Wang K, Liu Y, Sun Z, et al. Microstructural evolution and mechanical properties of Inconel 718 superalloy thin wall fabricated by pulsed plasma arc additive manufacturing[J]. Journal of Alloys and Compounds, 2020, 819: 1 − 10. doi: 10.1016/j.jallcom.2019.152936

    [3] 耿汝伟, 杜军, 魏正英, 等. 金属增材制造中微观组织相场法模拟研究进展[J]. 材料导报, 2018, 32(7): 1145 − 1150, 1180. doi: 10.11896/j.issn.1005-023X.2018.07.015

    Geng Ruwei, Du Jun, Wei Zhengying, et al. Current research status of phase field simulation for microstructures of additively manufactured metals[J]. Materials Reports, 2018, 32(7): 1145 − 1150, 1180. doi: 10.11896/j.issn.1005-023X.2018.07.015

    [4]

    Sawant M, Jain N K, Nikam S. Theoretical modeling and finite element simulation of dilution in micro-plasma transferred arc additive manufacturing of metallic materials[J]. International Journal of Mechanical Sciences, 2019, 164: 1 − 10. doi: 10.1016/j.ijmecsci.2019.105166

    [5] 张冬云, 吴瑞, 张晖峰, 等. 激光金属熔覆成形过程中温度场演化的三维数值模拟[J]. 中国激光, 2015, 42(5): 104 − 115.

    Zhang Dongyun, Wu Rui, Zhang Huifeng, et al. Numerical simulation of temperature field evolution in the process of laser metal deposition[J]. Chinese Journal of Lasers, 2015, 42(5): 104 − 115.

    [6] 马立杰. AISI316激光熔覆成形过程数值模拟研究[D]. 北京: 北京理工大学硕士学位论文, 2015.

    Ma Lijie. The research of AISI 316 of numerical simulation in laser cladding forming (LCF)[D]. Beijing: Master Thesis of Beijing Institute of Technology, 2015.

    [7] 黄健康, 杨茂鸿, 余淑荣, 等. 旁路耦合微束等离子弧堆垛与熔池动态行为数值模拟[J]. 机械工程学报, 2018, 54(2): 70 − 76. doi: 10.3901/JME.2018.02.070

    Huang Jiankang, Yang Maohong, Yu Shurong, et al. Study on the dynamic behavior of metal pool during the stationary pileup of the double-electrode micro plasma arc welding[J]. Journal of Mechanical Engineering, 2018, 54(2): 70 − 76. doi: 10.3901/JME.2018.02.070

    [8]

    Keller T, Lindwall G, Ghosh S, et al. Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys[J]. Acta Materialia, 2017, 139: 244 − 253. doi: 10.1016/j.actamat.2017.05.003

    [9] 梁永超, 刘让苏, 朱轩民, 等. 液态Mg7Zn3合金快速凝固过程中微观结构演变机理的模拟研究[J]. 物理学报, 2010, 59(11): 7930 − 7940. doi: 10.7498/aps.59.7930

    Liang Yongchao, Liu Rangsu, Zhu Xuanmin, et al. Simulation study of evolution mechanisms of microstructures during rapid solidification of liquid Mg7Zn3 alloy[J]. Acta Physica Sinica, 2010, 59(11): 7930 − 7940. doi: 10.7498/aps.59.7930

    [10] 陈强, 曹红红, 黄海波. 分子动力学中势函数研究[J]. 天津理工学院学报, 2004, 20(2): 101 − 105.

    Chen Qiang, Cao Honghong, Huang Haibo. A research on the interatomic potential in molecular dynamics(MD)[J]. Journal of Tianjin Institute of Technology, 2004, 20(2): 101 − 105.

    [11]

    Hirel P. Atomsk: A tool for manipulating and converting atomic data files[J]. Computer Physics Communications, 2015, 197: 212 − 219. doi: 10.1016/j.cpc.2015.07.012

    [12]

    Tsuzuki H, Branicio P S, Rino J P. Structural characterization of deformed crystals by analysis of common atomic neighborhood[J]. Computer Physics Communications, 2007, 177(6): 518 − 523. doi: 10.1016/j.cpc.2007.05.018

    [13] 方向, 赵云松, 张剑, 等. 固溶热处理对一种第三代镍基单晶高温合金组织及高温持久性能的影响[J]. 重庆大学学报, 2017, 40(10): 87 − 98. doi: 10.11835/j.issn.1000-582X.2017.10.010

    Fang Xiang, Zhao Yunsong, Zhang Jian, et al. Effect of solution heat treatment on microstructures and stress rupture properties of a third generation Ni-based single crystal superalloy[J]. Journal of Chongqing University, 2017, 40(10): 87 − 98. doi: 10.11835/j.issn.1000-582X.2017.10.010

    [14]

    Bonny G, Terentyev D, Pasianot R C, et al. Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy[J]. Modelling & Simulation in Materials Science & Engineering, 2011, 19(8): 85008 − 85021.

    [15] 刘志勇, 许庆彦, 柳百成. 铸造镁合金的枝晶生长模拟[J]. 金属学报, 2007, 43(4): 367 − 373. doi: 10.3321/j.issn:0412-1961.2007.04.007

    Liu Zhiyong, Xu Qingyan, Liu Baicheng. Modedling of dendrite growth for the cast magnesium alloy[J]. Acta Metallurgica Sinica, 2007, 43(4): 367 − 373. doi: 10.3321/j.issn:0412-1961.2007.04.007

  • 期刊类型引用(2)

    1. 余章钦,胡建华,杨正,黄尚宇. 铜/铝磁脉冲半固态辅助钎焊界面扩散过程. 焊接学报. 2023(04): 120-128+136 . 本站查看
    2. 袁晓静,邱贺方,曾繁琦,罗伟蓬,王旭平,杨俊华. 固溶处理对脉冲微弧等离子增材制造Inconel 625构件力学性能的影响. 稀有金属材料与工程. 2022(11): 4297-4305 . 百度学术

    其他类型引用(1)

图(10)  /  表(1)
计量
  • 文章访问数:  521
  • HTML全文浏览量:  143
  • PDF下载量:  45
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-01-30
  • 网络出版日期:  2021-10-24
  • 刊出日期:  2021-08-30

目录

    /

    返回文章
    返回