高级检索

钛合金/不锈钢冷金属过渡焊接头组织及性能

常敬欢, 曹睿, 闫英杰

常敬欢, 曹睿, 闫英杰. 钛合金/不锈钢冷金属过渡焊接头组织及性能[J]. 焊接学报, 2021, 42(6): 44-51. DOI: 10.12073/j.hjxb.20210114001
引用本文: 常敬欢, 曹睿, 闫英杰. 钛合金/不锈钢冷金属过渡焊接头组织及性能[J]. 焊接学报, 2021, 42(6): 44-51. DOI: 10.12073/j.hjxb.20210114001
CHANG Jinghuan, CAO Rui, YAN Yingjie. Microstructure and properties of titanium alloy/stainless steel joint by cold metal transfer joining technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 44-51. DOI: 10.12073/j.hjxb.20210114001
Citation: CHANG Jinghuan, CAO Rui, YAN Yingjie. Microstructure and properties of titanium alloy/stainless steel joint by cold metal transfer joining technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 44-51. DOI: 10.12073/j.hjxb.20210114001

钛合金/不锈钢冷金属过渡焊接头组织及性能

基金项目: 国家自然科学基金资助项目(51761027,51675255);甘肃省高校协同创新团队资助项目(2017C-07);兰州市科技厅项目(2019-49);甘肃省教育厅创新基金项目(2021B-308).
详细信息
    作者简介:

    常敬欢,博士;主要研究方向为异种金属焊接;Email:1716295050@qq.com.

    通讯作者:

    曹睿,博士,教授,博士研究生导师;Email:caorui@lut.edu.cn.

  • 中图分类号: TG 401

Microstructure and properties of titanium alloy/stainless steel joint by cold metal transfer joining technology

  • 摘要: 采用铜基填充金属对TC4钛合金、304不锈钢进行冷金属过渡焊接,分析了钛合金/不锈钢接头的界面组织、力学性能及腐蚀性能. 结果表明,采用冷金属过渡连接方法实现了TC4钛合金和304不锈钢的焊接. 钛合金/不锈钢接头主要由焊缝金属、不锈钢-铜焊缝界面和钛合金-铜焊缝界面组成. 钛合金/不锈钢接头的拉剪强度为306 MPa. 由于钛合金-铜焊缝界面中Ti-Cu,Ti-Fe金属间化合物的生成,接头沿钛合金-铜焊缝界面反应层发生脆性断裂. 钛合金/不锈钢接头在人工海水溶液中发生了电偶腐蚀,其腐蚀机理为阴极区发生氧的还原反应和析氢反应,阳极发生焊缝金属的氧化,钛合金母材表面TiO2氧化膜的形成,不锈钢母材发生点蚀.
    Abstract: Cold metal transfer technology was used to weld TC4 titanium alloy and 304 stainless steel with copper-based filler metal, and the interface microstructure, mechanical properties and corrosion properties of the titanium alloy/stainless steel joint were analyzed. The results showed that TC4 titanium alloy and 304 stainless steel are joined by cold metal transfer method. The titanium alloy/stainless steel joint is mainly composed of weld metal, stainless steel-copper weld metal interface and titanium alloy-copper weld metal interface. The tension-shear strength of the titanium alloy/stainless steel joint is 306 MPa. Due to the formation of Ti-Cu, Ti-Fe intermetallics at the titanium alloy-copper weld metal interface, the joint exhibits a brittle fracture along the titanium alloy-copper weld metal interface reaction layer. Galvanic corrosion is occurred in the titanium alloy/stainless steel joint immersed in the artificial seawater solution. The corrosion mechanisms are the reduction reaction of oxygen and hydrogen evolution reaction at the cathode, the oxidation of weld metal, the formation of TiO2 oxide film on the surface of titanium alloy and pitting corrosion of the stainless steel base metal at the anode.
  • 异种金属钛/钢焊接结构兼具了两者的高比强度、低质量、优异的耐腐蚀性和满意的经济性等优点,被广泛应用于海水冷热交换器、涡轮喷气发动机压气机和燃烧室之间的连接等[1-3]. 但是由于钛和铁之间的物理性能存在较大的差异,如热导率、线膨胀系数等,在焊后冷却过程中收缩不均匀,导致接头中存在较大的焊接应力[4]. 另一方面,当钛/钢直接熔化焊时,焊缝中含Fe量大大超过在Ti中的溶解度范围[5],焊后接头中存在大量硬脆的Ti-Fe金属间化合物(600 ~ 1050 HV)[6]. 因此钛/钢异种金属直接焊接后,接头的力学性能很差. 关于改善钛/钢异种金属焊接接头力学性能方面的研究有很多. 主要通过合适的焊接方法[7-8]和添加中间填充金属[9-15]来抑制硬脆的Ti-Fe金属间化合物的生成,进一步改善接头的力学性能. 很多学者主要研究钛/钢异种金属焊接接头的力学性能. 对钛/钢接头的耐腐蚀性能的研究相对较少. 因此研究异种金属接头的耐腐蚀性很有必要. 目前主要研究铝/钢[16-17]、铝/铜[18-19]、铝/钛[20-21]、镁/铝[22-23]、镁/钢[24-25]以及钛/钢[26-27]等异种金属接头的耐腐蚀性. 结果表明,异种金属接头在特定的溶液中腐蚀后发生了电偶腐蚀.

    关于钛/钢异种金属接头的耐腐蚀性研究相对较少. 文中采用铜基填充金属对Ti6Al4V钛合金/304不锈钢进行冷金属过渡(CMT)搭接焊接. 一方面是Ti与Cu发生反应,生成硬度相对较低的Ti-Cu金属间化合物(500 ~ 600 HV),此外铜具备良好的塑性和延展性,可以缓解接头中的焊接应力[28]. 另一方面是选用热输入较低的冷金属过渡技术进行钛合金、不锈钢焊接,以减少金属间化合物的生成[29]. 焊后分析了接头的显微组织及形成过程,评定了接头的力学性能,研究了接头的腐蚀性能. 研究内容有望为钛/钢异种金属焊接接头的性能改善提供理论基础.

    试验采用直径为1.2 mm的ERCuNiAl铜合金焊丝对TC4钛合金(TC4)和304不锈钢(304 SS)进行CMT搭接焊接. 其中钛合金板和304不锈钢板的尺寸均为100 mm × 50 mm × 1 mm. 其化学成分如表1所示.

    表  1  材料的化学成分 (质量分数/%)
    Table  1.  Chemical compositions of materials (wt. %)
    材料CrNiSiMnCFeAlVNHOTiPbZnCu
    304 SS18.0 ~ 20.08.0 ~ 12.01.02.0≤ 0.03余量
    TC40.10.35.5 ~ 6.83.5 ~ 4.50.050.010.2余量
    ERCuNiAl6.01.08.00.0380.003余量
    下载: 导出CSV 
    | 显示表格

    试验采用冷金属过渡一元程序(CMT 3200,福尼斯,奥地利)进行搭接焊. 焊接前,先用丙酮对TC4钛合金板待焊面进行清洗,再用钢丝刷打磨,然后分别用5% ~ 10%氢氧化钠溶液和30%硝酸溶液清洗5 min,再用自来水冲洗,最后用酒精冲洗,吹干待用. 采用钢丝刷打磨304不锈钢板待焊表面,将处理好的不锈钢板放入酒精中超声清洗,最后吹干待用. 焊接时,采用不锈钢板放置在上面,钛合金板放置在下面的搭接方式,搭接量为10 mm,如图1所示. 焊接速度为8.53 mm/s,送丝速度为5.5 m/min (电流I=171 A,电压U=15.0 V). 过程中采用气流量为15 L/min的高纯氩气.

    图  1  CMT焊接TC4/304 SS示意图 (mm)
    Figure  1.  Schematic diagrams of CMT welding TC4/304 SS

    焊接后,采用配备能谱仪(EDS)的扫描电子显微镜(SEM,FEG 450)对横截面接头的显微组织进行分析;在室温下采用拉伸机(AGS-X 300KN)测试接头的拉伸性能,拉伸速度为0.5 mm/min;采用维氏硬度计(HVT-1000A)测试接头的显微硬度,测试载荷为0.98 N,保载时间10 s;采用X射线衍射仪(XRD,D8Discover25)对断口物相组成进行分析;采用光镜(OM)对断口侧面进行分析.

    对抛光后的试样进行浸泡腐蚀试验. 首先在腐蚀溶液中浸泡30天,然后采用SEM对腐蚀后接头的显微组织进行分析. 腐蚀溶液为人工海水,其配比为0.23 g MgCl2,0.33 g Mg2SO4,2.67 g NaCl和100 mL H2O.

    图2为TC4钛合金/304不锈钢搭接焊接接头的宏观形貌. 从图中可以看出,使用铜基填充金属对钛合金、不锈钢CMT焊接后,焊缝成形良好,表面无焊接缺陷,焊缝背面无明显的烧损.

    图  2  TC4/304 SS搭接焊接头的焊缝形貌
    Figure  2.  Weld appearance of TC4/304 SS lapped welding joint. (a) front surface; (b) back surface

    TC4钛合金/304不锈钢搭接焊接接头主要由焊缝金属、304 SS-铜焊缝界面(界面I)和TC4-铜焊缝界面(界面II)组成,如图3所示.

    图  3  TC4/304 SS搭接焊接头的横截面形貌示意图
    Figure  3.  Schematic diagrams of the cross-section of TC4/304 SS lapped welding joint

    图4为焊缝金属、界面I和界面II的微观组织. 图中各个区域的EDS分析如表2所示. 图4a为焊缝金属的SEM图,主要由铜固溶体和α2相、Fe-Cr-Al-Cu-Ti-Ni化合物组成[5]. 图4b为靠近界面I处焊缝金属的SEM图,主要由铜固溶体和α2相、Fe-Cr-Al-Cu-Ni化合物组成[5]. 图4c为界面II的SEM图,从图中可以看出,TC4-Cu焊缝界面形成明显的界面反应层. 进一步对图4c界面反应层中的A,B和C区域放大分别如图4d4e4f所示. 结合EDS分析,界面反应层中的A区域主要由Ti-Cu-Fe化合物和Ti-Cu-Al化合物组成. 界面反应层中的B区域主要由Cu-Ti-Al-Fe化合物、Ti-Cu金属间化合物组成. 界面反应层中的C区域主要由Ti-Cu-Al-Ni-Fe化合物、Ti-Cu-Al化合物、Ti-Fe-Cr化合物组成,基体相由铜固溶体和α2相组成[5].

    图  4  TC4/304 SS搭接焊接头的显微组织
    Figure  4.  Microstructure of TC4/304 SS lapped welding joint. (a) weld metal; (b) interface I; (c) interface II; (d) magnified zone A in Fig. 4c; (e) magnified zone B in Fig. 4c; (f) magnified zone C in Fig. 4c
    表  2  图4中各个区域的EDS元素组成 (原子分数,%)
    Table  2.  EDS elemental compositions of various locations in Fig. 4
    区域CuAlNiFeCrTi
    1 77.4 14.6 3.3 3.0 0.8 0.6
    2 7.0 9.9 4.5 54.8 16.2 6.5
    3 76.0 13.8 4.5 4.3 0.7 0.5
    4 7.6 9.0 5.0 60.5 15.5 1.1
    5 22.4 8.8 2.9 13.1 2.6 49.6
    6 22.5 12.3 2.1 2.0 1.0 59.9
    7 17.3 11.1 2.2 7.9 2.9 57.9
    8 32.6 16.2 5.0 12.6 1.5 31.7
    9 27.3 9.7 2.5 6.8 1.7 51.8
    10 81.9 12.7 1.0 1.6 0.6 1.4
    11 19.0 20.9 18.5 15.4 1.0 24.9
    12 8.1 5.5 2.0 27.3 14.4 39.0
    13 49.6 14.3 3.1 3.4 0.9 28.4
    下载: 导出CSV 
    | 显示表格

    图5为TC4钛合金/304不锈钢搭接焊接接头的形成过程,过程中的反应式如表3所示. 当CMT电弧的作用于铜基填充金属时,铜基填充金属完全熔化,304不锈钢母材部分熔化,TC4钛合金母材部分熔化,如图5a所示,液态熔池主要由Cu,Al,Ti,Fe,Cr和Ni元素组成,如表3中式(1)所示. 随着熔池温度的降低,焊缝金属、靠近界面I和界面II均发生反应,如图5b所示. 首先发生液相的分离,形成LCu,Al,LFe,Cr,Al,Cu,Ti,Ni,LFe,Cr,Al,Cu,Ni,LCu,Ti,Al,Fe,LTi,Cu,Al,Ni,Fe,LTi,Fe,Cr,LTi,Cu,Fe,LTi,Cu,Al和LTi,Cu相,如表3中式(2)所示. 由于电弧的搅拌作用,焊缝金属中的Fe,Cr,Al,Cu,Ti,Ni发生反应,如表3中式(3)所示,生成Fe-Cr-Al-Cu-Ti-Ni化合物. 靠近界面I处的焊缝金属中的Fe,Cr,Al,Cu,Ni发生反应,如表3中式(4)所示,生成Fe-Cr-Al-Cu-Ni化合物. 当温度降至1005 ℃时,LCu,Al发生反应,如表3中式(5)所示,生成铜固溶体和α2[5]. 界面II处的反应层发生一系列反应,如表3中式(6) ~ 式(12)所示,生成各种金属间化合物. 最后液态金属凝固形成焊接接头,如图5c所示.

    图  5  TC4/304 SS搭接焊接头的形成过程
    Figure  5.  Formation process of TC4/304 SS lapped welding joint. (a) the formation of liquid metal; (b) the reaction of liquid metal; (c) the solidification of liquid metal
    表  3  TC4/304 SS搭接焊接头形成过程中的反应式
    Table  3.  Reaction formula during the formation process of TC4/304 SS lapped welding joint
    序号反应式
    1Cu+Al+Ti+Fe+Cr+Ni→LCu,Al,Ti,Fe,Cr,Ni
    2LCu,Al,Ti,Fe,Cr,Ni→LCu,Al+LFe,Cr,Al,Cu,Ti,Ni+LFe,Cr,Al,Cu,Ni+
    LCu,Ti,Al,Fe+LTi,Cu,Al,Ni,Fe+LTi,Fe,Cr+LTi,Cu,Fe+LTi,Cu,Al+LTi,Cu
    3LFe,Cr,Al,Cu,Ti,Ni→Fe-Cr-Al-Cu-Ti-Ni化合物
    4LFe,Cr,Al,Cu,Ni→Fe-Cr-Al-Cu-Ni化合物
    5LCu,Al→β+Cu、β→γ1+Cu和Cu+γ1→α2
    6LFe,Cr,Al,Cu,Ti,Ni→Fe-Cr-Al-Cu-Ti-Ni化合物
    7LCu,Ti,Al,Fe→Cu-Ti-Al-Fe化合物
    8LTi,Cu,Al,Ni,Fe→Ti-Cu-Al-Fe-Ni化合物
    9LTi,Fe,Cr→Ti-Fe-Cr化合物
    10LTi,Cu,Fe→Ti-Cu-Fe化合物
    11LTi,Cu,Al→Ti-Cu-Al化合物
    12LTi,Cu→βTi+Ti2Cu、βTi→αTi+Ti2Cu
    下载: 导出CSV 
    | 显示表格

    图6为TC4钛合金/304不锈钢搭接焊接接头与纯钛/镀锌钢、纯钛/铜、钛合金/铜接头拉剪强度的对比图[30-32],从图中可以看出,纯钛/镀锌钢接头的强度最高,可达325 MPa,而钛合金/不锈钢接头的拉剪强度次之,为306 MPa. 纯钛/镀锌钢和钛合金/不锈钢接头的强度约为纯钛/铜、钛合金/铝接头强度的2倍.

    图  6  不同接头拉剪强度的对比图
    Figure  6.  Comparison of the tensile strength for TC4/304 SS lapped welding joint and other related joints

    图7为TC4钛合金/304不锈钢搭接焊接接头中沿界面I和界面II的显微硬度变化. 从图中可以看出,界面I的显微硬度变化不大,主要是因为无明显的反应层生成. 焊缝金属的显微硬度平均值为244 HV,显微硬度的变化主要是Fe-Cr-Al-Cu-Ti-Ni化合物的生成. 对界面II而言,界面反应层的显微硬度明显的高于焊缝金属和TC4钛合金母材的显微硬度,其最大值为600 HV. 主要是生成大量的Ti-Cu金属间化合物.

    图  7  TC4/304 SS搭接焊接头的显微硬度变化
    Figure  7.  Microhardness variation of TC4/304 SS lapped welding joint. (a) schematic diagram of microhardness measurement position; (b) microhardness variation along the black arrow in Fig. 7a

    图8为TC4钛合金/304不锈钢搭接焊接接头的断裂方式和断口侧面OM图. 从图8a可以看出,接头沿界面II断裂. 根据图8b断口侧面图也可以看出,接头断裂在Ti-Cu界面反应层. 图9为TC4钛合金和304不锈钢搭接焊接接头断口XRD图谱. 从图中可以看出,断口主要由Ti-Cu金属间化合物、Ti-Cu-Al化合物和Ti-Fe金属间化合物组成. 根据图4c图7可以看出,该区域生成Ti-Cu金属间化合物和硬度较高的Ti-Fe金属间化合物,因此在受到力的作用下成为整个接头中最薄弱的位置.

    图  8  TC4/304 SS搭接焊接头的
    Figure  8.  TC4/304 SS lapped welding joint. (a) the fracture mode of the joint; (b) the fracture side of the joint
    图  9  TC4/304 SS搭接焊接头的断口XRD图谱
    Figure  9.  XRD spectra of fracture TC4/304 SS lapped welding joint

    图10为TC4钛合金/304不锈钢搭接焊接接头中焊缝金属、界面I和界面II在人工海水溶液浸泡30天后的微观组织. 图中各个区域的EDS分析如表4所示. 图10a为焊缝金属浸泡腐蚀后的SEM图,主要由Fe-Cr-Cu-Al-Ti-Ni-O氧化物、CuO和Al2O3双相氧化物、CuO腐蚀产物组成. 图10b为界面I浸泡腐蚀后的SEM图,从图中可以看出界面I和靠近界面I处的焊缝金属发生明显的腐蚀. 304不锈钢母材发生点蚀. 进一步对界面I (图10b中D区)和靠近界面I处的焊缝金属(图10b中E区)放大,分别如图10d10e所示. 结合EDS分析,浸泡腐蚀后的界面I主要由Fe-Cr-Al-Cu-Ni-O氧化物和CuO氧化产物组成. 浸泡腐蚀后靠近界面I处的焊缝金属主要由Al2O3氧化物和Fe-Cr-Al-Cu-Ni-O氧化物组成. 图10c为界面II浸泡腐蚀后的SEM图,从图中可以看出,靠近母材处的反应层发生明显的腐蚀. 进一步对图10c中的F区域放大如图10f所示. 结合EDS分析,浸泡腐蚀后的界面II主要由Ti-Cu-O氧化物组成.

    图  10  人工海水溶液浸泡30天后TC4/304 SS搭接焊接头的显微组织
    Figure  10.  Microstructure of TC4/304 SS lapped welding joint after artificial seawater solution immersion test for 30 days. (a) weld metal; (b) interface I; (c) interface II; (d) magnified zone D in Fig. 10b; (e) magnified zone E in Fig. 10b; (f) magnified zone F in Fig. 10c
    表  4  图10中各个区域的EDS元素组成 (原子分数,%)
    Table  4.  EDS elemental compositions of various locations in Fig. 10
    区域CuAlNiFeCrTiO
    17.910.53.333.38.04.131.4
    261.416.23.73.60.40.812.3
    354.97.71.55.51.51.226.4
    45.17.23.755.215.30.310.8
    531.34.81.610.03.00.148.2
    69.418.94.41.80.2-63.0
    77.210.53.952.311.90.610.0
    824.84.91.32.10.27.858.9
    919.94.71.10.90.232.540.4
    下载: 导出CSV 
    | 显示表格

    当TC4钛合金/304不锈钢搭接焊接头浸泡在人工海水溶液中时,接头发生电偶腐蚀,腐蚀过程中阴极发生氧的还原反应和析氢反应[23],分别如式(1)和式(2)所示,即

    $${\rm{O}}_2 + 2{\rm{H}}_2{\rm{O}} + 4{{\rm{e}}^ - } \to 4{\rm{O}}{{\rm{H}}^ - }$$ (13)
    $${\rm{2H_2O + 2{{\rm{e}}^ - } \to 2O{H^ - }{\rm{ + }}H_2}}$$ (14)

    阳极发生焊缝金属氧化,如式(3)所示,即

    $$\begin{split} &\\ & M \to {M^{{{n + }}}}{{ + n}}{{\rm{e}}^ - } \end{split}$$ (15)

    此外,TC4母材发生氧化,生成TiO2氧化膜,如式(4)所示,即

    $${\rm{T}}{\rm{i + }}{\rm{O}}_2 \to {\rm{T}}{\rm{i}}{\rm{O}}_2$$ (16)

    (1) 采用铜基填充金属通过冷金属过渡技术成功实现了TC4钛合金与304不锈钢之间的焊接,获得成形良好的焊缝.

    (2) 接头的拉剪强度为306 MPa. TC4钛合金母材-铜焊缝金属的界面形成大量的Ti-Cu金属间化合物和Ti-Fe金属间化合物,使得界面反应层的硬度明显高于和焊缝金属和母材的硬度,导致接头沿钛合金-铜焊缝金属界面发生脆性断裂.

    (3) 接头在人工海水溶液中发生电偶腐蚀. 钛合金母材表面形成氧化膜,不锈钢母材发生点蚀. 304 SS-铜焊缝界面发生明显的腐蚀,主要由Fe-Cr-Al-Cu-Ni-O氧化物和CuO氧化产物组成. Ti-Cu金属间化合物发生明显的腐蚀,形成Ti-Cu-O氧化物.

    (4) 焊缝金属主要由Fe-Cr-Cu-Al-Ti-Ni化合物、Cu固溶体和α2相组成. 腐蚀后的焊缝金属主要由Fe-Cr-Cu-Al-Ti-Ni-O氧化物、CuO和Al2O3双相氧化物、CuO腐蚀产物组成.

  • 图  1   CMT焊接TC4/304 SS示意图 (mm)

    Figure  1.   Schematic diagrams of CMT welding TC4/304 SS

    图  2   TC4/304 SS搭接焊接头的焊缝形貌

    Figure  2.   Weld appearance of TC4/304 SS lapped welding joint. (a) front surface; (b) back surface

    图  3   TC4/304 SS搭接焊接头的横截面形貌示意图

    Figure  3.   Schematic diagrams of the cross-section of TC4/304 SS lapped welding joint

    图  4   TC4/304 SS搭接焊接头的显微组织

    Figure  4.   Microstructure of TC4/304 SS lapped welding joint. (a) weld metal; (b) interface I; (c) interface II; (d) magnified zone A in Fig. 4c; (e) magnified zone B in Fig. 4c; (f) magnified zone C in Fig. 4c

    图  5   TC4/304 SS搭接焊接头的形成过程

    Figure  5.   Formation process of TC4/304 SS lapped welding joint. (a) the formation of liquid metal; (b) the reaction of liquid metal; (c) the solidification of liquid metal

    图  6   不同接头拉剪强度的对比图

    Figure  6.   Comparison of the tensile strength for TC4/304 SS lapped welding joint and other related joints

    图  7   TC4/304 SS搭接焊接头的显微硬度变化

    Figure  7.   Microhardness variation of TC4/304 SS lapped welding joint. (a) schematic diagram of microhardness measurement position; (b) microhardness variation along the black arrow in Fig. 7a

    图  8   TC4/304 SS搭接焊接头的

    Figure  8.   TC4/304 SS lapped welding joint. (a) the fracture mode of the joint; (b) the fracture side of the joint

    图  9   TC4/304 SS搭接焊接头的断口XRD图谱

    Figure  9.   XRD spectra of fracture TC4/304 SS lapped welding joint

    图  10   人工海水溶液浸泡30天后TC4/304 SS搭接焊接头的显微组织

    Figure  10.   Microstructure of TC4/304 SS lapped welding joint after artificial seawater solution immersion test for 30 days. (a) weld metal; (b) interface I; (c) interface II; (d) magnified zone D in Fig. 10b; (e) magnified zone E in Fig. 10b; (f) magnified zone F in Fig. 10c

    表  1   材料的化学成分 (质量分数/%)

    Table  1   Chemical compositions of materials (wt. %)

    材料CrNiSiMnCFeAlVNHOTiPbZnCu
    304 SS18.0 ~ 20.08.0 ~ 12.01.02.0≤ 0.03余量
    TC40.10.35.5 ~ 6.83.5 ~ 4.50.050.010.2余量
    ERCuNiAl6.01.08.00.0380.003余量
    下载: 导出CSV

    表  2   图4中各个区域的EDS元素组成 (原子分数,%)

    Table  2   EDS elemental compositions of various locations in Fig. 4

    区域CuAlNiFeCrTi
    1 77.4 14.6 3.3 3.0 0.8 0.6
    2 7.0 9.9 4.5 54.8 16.2 6.5
    3 76.0 13.8 4.5 4.3 0.7 0.5
    4 7.6 9.0 5.0 60.5 15.5 1.1
    5 22.4 8.8 2.9 13.1 2.6 49.6
    6 22.5 12.3 2.1 2.0 1.0 59.9
    7 17.3 11.1 2.2 7.9 2.9 57.9
    8 32.6 16.2 5.0 12.6 1.5 31.7
    9 27.3 9.7 2.5 6.8 1.7 51.8
    10 81.9 12.7 1.0 1.6 0.6 1.4
    11 19.0 20.9 18.5 15.4 1.0 24.9
    12 8.1 5.5 2.0 27.3 14.4 39.0
    13 49.6 14.3 3.1 3.4 0.9 28.4
    下载: 导出CSV

    表  3   TC4/304 SS搭接焊接头形成过程中的反应式

    Table  3   Reaction formula during the formation process of TC4/304 SS lapped welding joint

    序号反应式
    1Cu+Al+Ti+Fe+Cr+Ni→LCu,Al,Ti,Fe,Cr,Ni
    2LCu,Al,Ti,Fe,Cr,Ni→LCu,Al+LFe,Cr,Al,Cu,Ti,Ni+LFe,Cr,Al,Cu,Ni+
    LCu,Ti,Al,Fe+LTi,Cu,Al,Ni,Fe+LTi,Fe,Cr+LTi,Cu,Fe+LTi,Cu,Al+LTi,Cu
    3LFe,Cr,Al,Cu,Ti,Ni→Fe-Cr-Al-Cu-Ti-Ni化合物
    4LFe,Cr,Al,Cu,Ni→Fe-Cr-Al-Cu-Ni化合物
    5LCu,Al→β+Cu、β→γ1+Cu和Cu+γ1→α2
    6LFe,Cr,Al,Cu,Ti,Ni→Fe-Cr-Al-Cu-Ti-Ni化合物
    7LCu,Ti,Al,Fe→Cu-Ti-Al-Fe化合物
    8LTi,Cu,Al,Ni,Fe→Ti-Cu-Al-Fe-Ni化合物
    9LTi,Fe,Cr→Ti-Fe-Cr化合物
    10LTi,Cu,Fe→Ti-Cu-Fe化合物
    11LTi,Cu,Al→Ti-Cu-Al化合物
    12LTi,Cu→βTi+Ti2Cu、βTi→αTi+Ti2Cu
    下载: 导出CSV

    表  4   图10中各个区域的EDS元素组成 (原子分数,%)

    Table  4   EDS elemental compositions of various locations in Fig. 10

    区域CuAlNiFeCrTiO
    17.910.53.333.38.04.131.4
    261.416.23.73.60.40.812.3
    354.97.71.55.51.51.226.4
    45.17.23.755.215.30.310.8
    531.34.81.610.03.00.148.2
    69.418.94.41.80.2-63.0
    77.210.53.952.311.90.610.0
    824.84.91.32.10.27.858.9
    919.94.71.10.90.232.540.4
    下载: 导出CSV
  • [1] 张岩. 钛合金/不锈钢异种材料激光焊接头微观组织及力学性能的研究[D]. 长春: 吉林大学, 2019.

    Zhang Yan. Study on microstructures and properties of la-ser welded joints of Titanium alloy/stainless steel dis-similar mate-rials[D]. Changchun: Jilin University, 2019.

    [2] 孙倩, 张霞, 张罡, 等. TA2, Q345及其爆炸复合板高周疲劳性能研究[J]. 压力容器, 2019, 36(7): 9 − 17. doi: 10.3969/j.issn.1001-4837.2019.07.002

    Sun Qian, Zhang Xia, Zhang Gang, et al. Researches on high cycle fatigue properties of TA2, Q345 and their explosively bonded plates[J]. Pressure Vessel Technology, 2019, 36(7): 9 − 17. doi: 10.3969/j.issn.1001-4837.2019.07.002

    [3]

    Mou G, Hua X, Wu D, et al. Microstructure and mechanical properties of cold metal transfer welding-brazing of titanium alloy (TC4) to stainless steel (304L) using V-shaped groove joints[J]. Journal of Materials Processing Technology, 2018, 266: 696 − 706.

    [4] 温秉权. 金属材料手册[M]. 北京: 电子工业出版社, 2009.

    Wen Bingquan. Handbook of metal materials[M]. Beijing: Publishing House of Electronics Industry, 2009.

    [5]

    Massalski T B. Binary alloy phase diagrams; Materials Park[M]. ASM International: Novelty, OH, USA, 1990.

    [6] 李标峰. 钛与钢及钛复合钢板的焊接性研究(Ⅱ)[J]. 材料开发与应用, 2004, 19(2): 45 − 46. doi: 10.3969/j.issn.1003-1545.2004.02.013

    Li Biaofeng. Study on the weldability of titanium and steel and titanium clad steel plate(Ⅱ)[J]. Development and Application of Materials, 2004, 19(2): 45 − 46. doi: 10.3969/j.issn.1003-1545.2004.02.013

    [7]

    Li S, Chen Y, Zhou X, et al. High-strength titanium alloy/steel butt joint produced via friction stir welding[J]. Materials Letters, 2019, 234: 155 − 158. doi: 10.1016/j.matlet.2018.09.094

    [8]

    Shi C G, Sun Z R, Fang Z H, et al. Design and test of a protective structure for the double vertical explosive welding of large titanium/steel plate[J]. China Welding, 2019, 28(3): 7 − 14.

    [9]

    Cheng Z, Ye Z, Huang J H, et al. Influence of heat input on the intermetallic compound characteristics and fracture mechanisms of titanium-stainless steel MIG-TIG double-sided arc welding joints[J]. Intermetallics, 2020, 127: 106973. doi: 10.1016/j.intermet.2020.106973

    [10]

    Wang T, Zhang B G, Wang H Q, et al. Microstructures and mechanical properties of electron beam-welded titanium-steel joints with vanadium, nickel, copper and silver filler metals[J]. Journal of Materials Engineering and Performance, 2014, 23(4): 1498 − 1504. doi: 10.1007/s11665-014-0897-8

    [11]

    Hao X H, Dong H G, Xia Y Q, et al. Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100-xCux high-entropy alloy interlayer[J]. Journal of Alloys and Compounds, 2019, 803: 649 − 657. doi: 10.1016/j.jallcom.2019.06.225

    [12]

    Zhang Y, Sun D Q, Gu X Y, et al. Nd: YAG pulsed laser welding of TC4 Ti alloy to 301L stainless steel using Ta/V/Fe composite interlayer[J]. Materials Letters, 2018, 212: 54 − 57. doi: 10.1016/j.matlet.2017.10.057

    [13] 褚巧玲. TA1/Q345层状复合板焊接机理及其组织演变行为研究[D]. 西安: 西安理工大学, 2017.

    Chu Qiaoling. Fusion welding on TA1/Q345 lamellar structure and joint microstructure evolution[D]. Xian: Xian University of Technology, 2017.

    [14]

    Song T F, Jiang X S, Shao Z Y, et al. Microstructure and mechanical properties of vacuum diffusion bonded joints be-tween Ti-6Al-4V titanium alloy and AISI316L stainless steel using Cu/Nb multi-interlayer[J]. Vacuum, 2017, 145: 68 − 76. doi: 10.1016/j.vacuum.2017.08.017

    [15]

    Yue X, He P, Feng J C, et al. Microstructure and interfacial reactions of vacuum brazing titanium alloy to stainless steel using an AgCuTi filler metal[J]. Materials Characterization, 2008, 59(12): 1721 − 1727. doi: 10.1016/j.matchar.2008.03.014

    [16]

    Sravanthi S S, Acharyya S G, Phani Prabhakar, et al. Effect of welding parameters on the corrosion behavior of dissimilar alloy welds of T6 AA6061 Al-Galvanized mild steel[J]. Journal of Materials Engineering and Performance, 2018, 27: 5518 − 5531. doi: 10.1007/s11665-018-3596-z

    [17]

    Shi Y, Li J, Zhang G, et al. Corrosion behavior of aluminum-steel weld-brazing joint[J]. Journal of Materials Engineering and Performance, 2016, 25(5): 1916 − 1923. doi: 10.1007/s11665-016-2020-9

    [18]

    Vergara-Juarez F, Rosales-Cadena I, Salinas-Bravo V M, et al. Effect of methanol on the corrosion behaviour of Al-Cu Alloys in sulphuric acid[J]. Corrosion Engineering, Science and Technology, 2017, 52(6): 476 − 483. doi: 10.1080/1478422X.2017.1335531

    [19]

    Sarvghad-Moghaddam M, Parvizi R, Davoodi A, et al. Establishing a correlation between interfacial microstructures and corrosion initiation sites in Al/Cu joints by SEM-EDS and AFM-SKPFM[J]. Corrosion Science, 2014, 79: 148 − 158. doi: 10.1016/j.corsci.2013.10.039

    [20]

    Behúlová M, Babalová E, Nagy M. Simulation model of Al-Ti dissimilar laser welding-brazing and its experimental verification[J]. IOP Conference Series: Materials Science and Engineering, 2017, 179: 012007. doi: 10.1088/1757-899X/179/1/012007

    [21]

    Vacchi G S, Plaine A H, Silva R, et al. Effect of friction spot welding (FSpW) on the surface corrosion behavior of over-lapping AA6181-T4/Ti-6Al-4V joints[J]. Materials & Design, 2017, 131: 127 − 134.

    [22]

    Madhavan S, Kamaraj M, Vijayaraghavan L, et al. Cold metal transfer welding of dissimilar A6061 aluminum alloy-az31b magnesium alloy: effect of heat input on microstructure, residual stress and corrosion behavior[J]. Transactions of the Indian Institute of Metals, 2016, 70(4): 1047 − 1054.

    [23]

    Li S X, Khan H, Hihara L H, et al. Marine atmospheric corrosion of Al-Mg joints by friction stir blind riveting[J]. Corrosion Science, 2016, 111: 793 − 801. doi: 10.1016/j.corsci.2016.05.009

    [24]

    Adlakha I, Bazehhour B G, Muthegowda N C, et al. Effect of mechanical loading on the galvanic corrosion behavior of a magnesium-steel structural joint[J]. Corrosion Science, 2018, 133: 300 − 309. doi: 10.1016/j.corsci.2018.01.038

    [25]

    Liu L M, Xu R Z, Investigation of corrosion behavior of Mg-steel laser-TIG hybrid lap joints[J]. Corrosion Science, 2012, 54: 212−218.

    [26]

    Ravi Shankar A, Sole R, Thyagarajan K, et al. Failure analysis of titanium heater tubes and stainless steel heat ex-changer weld joints in nitric acid loop[J]. Engineering Failure Analysis, 2019, 99: 248 − 262. doi: 10.1016/j.engfailanal.2019.02.016

    [27] 韩小敏. 钛-钢复合板爆炸焊接工艺及组织与性能研究[D]. 南京: 南京航空航天大学, 2016.

    Han Xiaomin. Investigation on the explosive welding technology and its microstructure and property of titanium-steel compo-site plate[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.

    [28]

    Zhang B G, Wang T, Chen G Q, et al. Contact reactive joining of TA15 and 304 stainless steel Via a copper interlayer heated by electron beam with a beam deflection[J]. Journal of Materials Engineering and Performance, 2012, 21(10): 2067 − 2073. doi: 10.1007/s11665-012-0132-4

    [29] 吕小青, 鲁硕, 徐连勇, 等. 7075/TC4异种金属CMT Advanced+P熔钎焊特性分析[J]. 焊接学报, 2021, 42(2): 1 − 7. doi: 10.12073/j.hjxb.20201019003

    Lü Xiaoqing, Lu Su, Xu Lianyong, et al. Analysis of CMT advanced+P welding-brazing characteristics of 7075/TC4 dissimilar metals[J]. Transactions of the China Welding Institution, 2021, 42(2): 1 − 7. doi: 10.12073/j.hjxb.20201019003

    [30]

    Chang J H, Cao R, Yan Y J. The joining behavior of titanium and Q235 steel joined by cold metal transfer joining technology[J]. Materials, 2019, 12(15): 2413. doi: 10.3390/ma12152413

    [31]

    Cao R, Feng Z, Lin Q L. Study on cold metal transfer welding–brazing of titanium to copper[J]. Materials & Design, 2014, 56: 165 − 173.

    [32]

    Cao R, Sun J H, Chen J H. Mechanisms of joining aluminum A6061-T6 and titanium Ti–6Al–4V alloys by cold metal transfer technology[J]. Science and Technology of Welding and Joining, 2013, 18(5): 425 − 433. doi: 10.1179/1362171813Y.0000000118

图(10)  /  表(4)
计量
  • 文章访问数:  455
  • HTML全文浏览量:  46
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 网络出版日期:  2021-08-16
  • 刊出日期:  2021-06-24

目录

/

返回文章
返回