Effect of filler metals on microstructure and properties of T2 copper/316L stainless steel GTAW joint
-
摘要: 采用钨极氩弧焊,分别填充纯铜焊丝和307Si焊丝对T2紫铜/316L不锈钢异种金属进行对接焊,探究焊丝对铜/不锈钢异种金属接头微观组织、力学性能和耐蚀性的影响. 结果表明,铁-铜液相分离对焊缝组织的形成起主导作用,但由于过冷度不同,填充两种焊丝制备焊缝的液相分离程度不同:铜焊丝制备焊缝中生成了初次液相分离富铁球,其内部又发生二次液相分离现象,生成富铜相;307Si焊丝制备焊缝中生成了初次液相分离富铜相,但富铜相并未呈现二次液相分离特征. 两种焊丝制备接头在拉伸试验中均断裂于铜侧热影响区,抗拉强度均超过铜母材强度的80%. 拉伸断口分布着韧窝和延伸区,呈现典型的韧性断裂特征. 腐蚀及电化学试验结果表明,与307Si焊丝制备接头相比,铜焊丝制备接头的腐蚀深度差更大,腐蚀电流密度更高,耐蚀性更差.Abstract: T2 copper/316L stainless steel dissimilar joints were produced by gas tungsten arc welding with Cu filler wire and 307Si filler wire, respectively. The effect of filler metals on microstructure, mechanical properties and corrosion resistance of the joints was investigated. The microstructure of copper/steel weld was largely affected by liquid phase separation between iron and copper. When Cu filler wire was used, Fe-rich spherulites formed by Fe-Cu primary liquid phase separation distributed in the weld. Inside the Fe-rich spherulites, minority Cu-rich spheres formed by secondary liquid phase separation. However, when 307Si filler wire was used, the primary liquid phase separated Cu-rich spherulites showed no characteristic of secondary liquid phase separation. The tensile specimens achieved by both filler wires fractured at HAZ on the copper side, and the strength of each joints reached at least 80% of Cu base metal. Dimples and stretched zone were distributed on the fracture, showing the ductile fracture mode. Compared to the joint achieved by 307Si filler wire, the joint achieved by Cu filler had larger corrosion depth and corrosion current density, showing an inferior corrosion resistance.
-
-
图 8 断口形貌及断裂路径
Figure 8. Fracture morphology and fracture path. (a) fracture morphology of the tensile specimen produced by copper filler wire; (b) high-magnification image of zone A Fig. 8a; (c) fracture path of the tensile specimen produced by 307Si filler wire
图 9 铜焊丝制备焊缝腐蚀形貌
Figure 9. Corrosion morphology of weld zone produced by copper filler wire. (a) weld zone; (b) high-magnification image of black box in Fig. 9a; (c) Fe-rich dendrite; (d) Fe-rich spherulites
表 1 母材和焊丝的化学成分(质量分数,%)
Table 1 Chemical composition of base materials and filler wires
材料 Ni Cr Mo Mn Si 316L 10.56 17.50 2.07 1.06 0.43 T2 — — — — ≤ 0.03 Cu焊丝 — — — ≤ 0.5 ≤ 0.5 307Si焊丝 8.78 19.3 — 6.57 0.86 材料 P S Sn Fe Cu 316L ≤ 0.03 ≤ 0.03 — 余量 0.05 T2 ≤ 0.01 ≤ 0.01 — — 余量 Cu焊丝 — — ≤ 1.0 — 余量 307Si焊丝 0.014 0.004 — 余量 — 表 2 焊接工艺参数
Table 2 Welding experiment paraments
焊丝 焊接电流
I/A送丝速度
vg/(mm·s−1)行走速度
vw/(mm·s−1)铜焊丝 130 6 1 307Si焊丝 表 3 富铁球EPMA定量分析结果
Table 3 EPMA quantitative analysis results of Fe-rich spherulite
位置 元素含量 a(%) 可能相 Fe Cu Cr Ni Mo A 10.2 80.4 4.2 1.5 3.6 富铁ε-Cu B 48.7 2.0 26.0 2.4 20.9 σ C 66.1 5.6 18.9 3.9 5.4 α-(Fe, Cr) D 2.8 95.1 0.7 1.3 0.0 ε-Cu 表 4 307Si焊丝制备的焊缝中EPMA定量分析结果
Table 4 EPMA quantitative analysis results in weld zone produced by 307Si filler wire
位置 元素含量 a(%) 可能相 Fe Cu Cr Ni Mn Si A 63.6 7.7 17.2 7.3 2.7 1.3 γ-Fe B 9.2 79.5 3.5 4.5 2.9 0.2 ε-Cu C 64.5 2.9 25.7 3.1 2.3 1.0 α-(Fe, Cr) D 67.5 2.5 23.0 4.6 1.3 1.1 α-Fe E 67.3 5.6 16.9 6.6 2.5 1.1 γ-Fe 表 5 母材及焊缝的极化曲线电化学参数
Table 5 Electrochemical parameters simulated from the polarization curves of base metals and welds
材料 腐蚀电位
Ecorr/V腐蚀电流
Icorr/(10−6 A·cm−2)T2 −0.214 14 316L −0.170 48 纯铜焊丝 −0.229 7.3 307Si焊丝 −0.262 4.8 -
[1] Akhtar Awais, Dong Honggang, Xia Yueqing, et al. Lap joining 5052 aluminum alloy to Ti6Al4V titanium alloy by GTAW process with AlSi12 filler wire[J]. China Welding, 2020, 29(3): 1 − 8.
[2] 马潇天, 闫德俊, 孟祥晨, 等. 铝/钢搅拌摩擦焊金属间化合物调控研究进展[J]. 焊接学报, 2020, 41(7): 1 − 11. doi: 10.12073/j.hjxb.20200617001 Ma Xiaotian, Yan Dejun, Meng Xiangchen, et al. Progress on the control of intermetallic compounds in aluminum/steel friction stir welding[J]. Transactions of the China Welding Institution, 2020, 41(7): 1 − 11. doi: 10.12073/j.hjxb.20200617001
[3] 王志刚. 气化炉SA387Gr11Cl2与316L异种钢的焊接工艺研究[J]. 压力容器, 2021, 38(3): 18 − 24. doi: 10.3969/j.issn.1001-4837.2021.03.003 Wang Zhigang. Study on welding process of SA387Gr11Cl2 and 316L dissimilar steel of gasifier[J]. Pressure Vessel Technology, 2021, 38(3): 18 − 24. doi: 10.3969/j.issn.1001-4837.2021.03.003
[4] Yingyot P, Samrerng D, Denchay B, et al. Gas tungsten arc welding of copper to stainless steel for ultra-high vacuum applications[J]. Journal of Materials Processing Technology, 2020, 277: 116490. doi: 10.1016/j.jmatprotec.2019.116490
[5] Wang Y, Li X, Wang Xiao, et al. Fabrication of a thick copper-stainless steel clad plate for nuclear fusion equipment by explosive welding[J]. Fusion Engineering and Design, 2018, 137: 91 − 96. doi: 10.1016/j.fusengdes.2018.08.017
[6] Nguyen Q, Azadkhou A, Akbari M, et al. Experimental investigation of temperature field and fusion zone microstructure in dissimilar pulsed laser welding of austenitic stainless steel and copper[J]. Journal of Manufacturing Processes, 2020, 56: 206 − 215. doi: 10.1016/j.jmapro.2020.03.037
[7] Li J, Cai Y, Yan F, et al. Porosity and liquation cracking of dissimilar Nd: YAG laser welding of SUS304 stainless steel to T2 copper[J]. Optics and Laser Technology, 2020, 122: 105881. doi: 10.1016/j.optlastec.2019.105881
[8] Magnabosco I, Ferro P, Bonollo F, et al. An investigation of fusion zone microstructures in electron beam welding of copper–stainless steel[J]. Materials Science and Engineering: A, 2006, 424: 163 − 173. doi: 10.1016/j.msea.2006.03.096
[9] Qi Y, Wang L, Wang S, et al. Structural and dynamical heterogeneity of undercooled Fe75Cu25 melts with miscibility gap[J]. Journal of Alloys and Compounds, 2014, 615: 962 − 968. doi: 10.1016/j.jallcom.2014.07.022
[10] Liu S, Jie J, Guo Z, et al. Solidification microstructure evolution and its corresponding mechanism of metastable immiscible Cu80Fe20 alloy with different cooling conditions[J]. Journal of Alloys and Compounds, 2018, 742: 99 − 106. doi: 10.1016/j.jallcom.2018.01.306
[11] Liu S, Jie J, Dong B, et al. Novel insight into evolution mechanism of second liquid-liquid phase separation in metastable immiscible Cu-Fe alloy[J]. Materials and Design, 2018, 156: 71 − 81. doi: 10.1016/j.matdes.2018.06.044
[12] Chen S, Huang J, Xia J, et al. Microstructural characteristics of a stainless steel/copper dissimilar joint made by laser welding[J]. Metallurgical and Materials Transactions A, 2013, 44A: 3690 − 3696.
[13] Cheng Z, Huang J, Ye Z, et al. Microstructures and mechanical properties of copper-stainless steel buttwelded joints by MIG-TIG double-sided arc welding[J]. Journal of Materials Processing Technology, 2019, 265: 87 − 98. doi: 10.1016/j.jmatprotec.2018.10.007
[14] Meng Y, Li X, Gao M, et al. Microstructures and mechanical properties of laser-arc hybrid welded dissimilar pure copper to stainless steel[J]. Optics and Laser Technology, 2019, 111: 140 − 145. doi: 10.1016/j.optlastec.2018.09.050
[15] Wang C P, Liu X J, Ohnuma I, et al. Thermodynamic database of the phase diagrams in Cu-Fe base ternary systems[J]. Journal of Phase Equilibria and Diffusion, 2004, 25: 320 − 328. doi: 10.1007/s11669-004-0150-5
[16] Cao S, Zhao J C. Determination of the Fe-Cr-Mo phase diagram at intermediate temperatures using dual-anneal diffusion multiples[J]. Journal of Phase Equilibria and Diffusion, 2016, 37: 25 − 38. doi: 10.1007/s11669-015-0423-1
[17] Gao X L, Li L K, Liu J, et al. Effect of laser offset on microstructure and mechanical properties of laser welding of pure molybdenum to stainless steel[J]. International Journal of Refractory Metals & Hard Materials, 2020, 88: 105186.
[18] Yang Y, Busby J T. Thermodynamic modeling and kinetics simulation of precipitate phases in AISI 316 stainless steels[J]. Journal of Nuclear Materials, 2014, 448: 282 − 293. doi: 10.1016/j.jnucmat.2014.02.008
[19] Wu Y H, Wang W L, Chang J, et al. Evolution kinetics of microgravity facilitated spherical macrosegregation within immiscible alloys[J]. Journal of Alloys and Compounds, 2018, 763: 808 − 814. doi: 10.1016/j.jallcom.2018.06.022
[20] Alvaro M, Stefan K, Diego N, et al. Solutal Marangoni flow as the cause of ring stains from drying salty colloidal drops[J]. Physical Review Fluids, 2019, 4: 041601. doi: 10.1103/PhysRevFluids.4.041601
[21] Ebara R, Takeda K, Ishibashi Y, et al. Microfractography in failure analysis of cold forging dies[J]. Engineering Failure Analysis, 2009, 16: 1968 − 1976. doi: 10.1016/j.engfailanal.2008.10.023
[22] San X Y, Zhang B, Wua B, et al. Investigating the effect of Cu-rich phase on the corrosion behavior of Super 304H austenitic stainless steel by TEM[J]. Corrosion Science, 2018, 130: 143 − 152. doi: 10.1016/j.corsci.2017.11.001
[23] Chen Y, Wang Y, Zhou L, et al. Macro-galvanic effect and its influence on corrosion behaviors of friction stir welding joint of 7050-T76 Al alloy[J]. Corrosion Science, 2020, 164: 108360. doi: 10.1016/j.corsci.2019.108360
-
期刊类型引用(2)
1. 杜正勇,李宇轩,刘煜纯,周利,赵洪运,宋晓国. 铜/钢异种金属焊接技术研究现状. 焊接. 2023(09): 1-23 . 百度学术
2. 姜超,龙伟民,冯健,张雷,张硕. 铜/不锈钢爆炸焊界面组织及性能. 焊接. 2021(09): 22-27+62 . 百度学术
其他类型引用(1)