Research on microstructure and properties of double-sided friction stir welding joint of 6082 aluminum alloy
-
摘要: 文中研究了改变搅拌针针长与焊缝相对位置对25 mm厚6082-T6铝合金双面搅拌摩擦焊接头组织与性能的影响规律. 结果表明,当搅拌针针长不足以覆盖1/2板厚时,针端搅拌力不足,焊缝中心存在大尺寸缺陷,拉伸与弯曲性能较差;当搅拌针针长超过1/2板厚0.5 mm时,焊缝中心依然存在间隙,但不明显影响拉伸与弯曲性能;当继续增加搅拌针针长时,焊缝中心缺陷消除,弯曲性能良好,但接头强度随针长继续增加而降低. 针长为14 mm时接头综合性能最好;同时发现焊接方向与横向偏移方向影响接头弯曲性能,当反面焊缝向后退侧偏移2.5 mm时,弯曲试样完好,当反面焊缝向前进侧偏移2.5 mm时,性能较为薄弱的后退侧HAZ会靠近焊缝中心,导致弯曲试样开裂.Abstract: The effects of needle length and weld position on microstructure and properties of 25 mm thick 6082-T6 aluminum alloy double-sided friction stir welding were studied in this paper. The results show that when the length of the stirring needle is not enough to cover half the thickness of the plate, the stirring force at the end of the stirring needle is insufficient, and there exist large defect in the weld center, and the tensile and bending properties are poor. When the length of the stirring needle is just over 1/2 plate thickness, there is still a small defect in the weld center, but it does not affect the tensile and bending properties obviously. When the length of the stirring needle continues to increase, the defects in the center of the weld are eliminated and the bending performance is good, but the joint strength decreases with the needle length continues to increase. In this study, the joint comprehensive performance is the best when the needle length is 14 mm. At the same time, it is found that the welding direction and the lateral offset direction affect the bending performance of the joint. When the reverse weld is offset by 2.5 mm to the retreat side, the bending sample is intact. When the reverse weld is offset by 2.5 mm to the advanced side, the backward HAZ with weaker performance will be close to the weld center, leading to the cracking of the bending sample.
-
Keywords:
- friction stir welding /
- aluminum alloy /
- railway vehicles /
- microstructure /
- mechanical properties
-
-
表 1 6082-T6化学成分
Table 1 Chemical composition of 6082-T6
Mg Si Cu Fe Mn Cr Ni Ti Zn Al 0.75 0.78 0.10 0.26 0.5 0.10 0.04 0.10 0.10 余量 表 2 6082-T6力学性能
Table 2 Mechanical properties of 6082-T6
屈服强度Rm/MPa 抗拉强度ReL/MPa 断后伸长率A(%) ≥ 240 ≥ 295 ≥ 8 表 3 试样的针长、焊接方向与偏移方向
Table 3 Needle length, welding direction and offset direction of each sample
编号 针长 正反面焊接方向 反面焊缝横向偏移方向 1号 12mm 相同 无偏移 2号 13 mm 相同 无偏移 3号 14 mm 相同 无偏移 4号 15 mm 相同 无偏移 5号 14 mm 相同 AS侧偏移2.5 mm 6号 14 mm 相同 RS侧偏移2.5 mm 7号 14 mm 相反 AS侧偏移2.5 mm 8号 14 mm 相反 RS侧偏移2.5 mm -
[1] 张亮亮, 王希靖, 魏学玲, 等. 转速对6082-T6铝合金搅拌摩擦焊焊接接头织构的影响[J]. 焊接学报, 2019, 40(3): 128 − 132. doi: 10.12073/j.hjxb.2019400085 Zhang Liangliang, Wang Xijing, Wei Xueling, et al. Effect of rotation speed on texture type in friction stir welding joint for 6082-T6 aluminum alloy[J]. Tansactions of the China Welding Instiution, 2019, 40(3): 128 − 132. doi: 10.12073/j.hjxb.2019400085
[2] Lü Zongliang, Han Zhenyu, Zhu Dong, et al. Enlarged-end tool for friction stir lap welding towards hook defect controlling[J]. China Welding, 2020, 29(1): 1 − 7.
[3] 邓舒浩, 邓运来, 张臻, 等. 焊接工艺对6082-T6铝合金FSW接头微观组织与力学性能的影响[J]. 中南大学学报(自然科学版), 2018, 49(10): 2413 − 2422. doi: 10.11817/j.issn.1672-7207.2018.10.007 Deng Shuhao, Deng Yunlai, Zhang Zhen, et al. Effect of welding parameters on microstructure and mechanical properties of 6082-T6 aluminum alloy FSW joint[J]. Journal of Central South University (Science and Technology), 2018, 49(10): 2413 − 2422. doi: 10.11817/j.issn.1672-7207.2018.10.007
[4] 王希靖, 魏学玲, 张亮亮. 6082-T6铝合金搅拌摩擦焊组织演变与力学性能[J]. 焊接学报, 2018, 39(3): 1 − 5. doi: 10.12073/j.hjxb.2018390057 Wang Xijing, Wei Xueling, Zhang Liangliang. Microstructural evolution and mechanical properties of friction stir welded 6082-T6 aluminum alloy[J]. Tansactions of the China Welding Instiution, 2018, 39(3): 1 − 5. doi: 10.12073/j.hjxb.2018390057
[5] Ivanov S Y, Panchenko O V, Mikhailov V G. Comparative analysis of non-uniformity of mechanical properties of welded joints of Al–Mg–Si alloys during friction stir welding and laser welding[J]. Metal Science and Heat Treatment, 2018, 60(5−6): 393 − 398. doi: 10.1007/s11041-018-0289-z
[6] Naumov A, Morozova I, Rylkov E, et al. Metallurgical and mechanical characterization of high-speed friction stir welded AA 6082-T6 aluminum alloy[J]. Materials, 2019, 12(24): 4211.
[7] Gopi S, Manonmani K. Microstructure and mechanical properties of friction stir welded 6082-T6 aluminium alloy[J]. Australian Journal of Mechanical Engineering, 2013, 11(2): 131 − 138. doi: 10.7158/M12-100.2013.11.2
[8] Senthilkumar R, Prakash M, Arun N, et al. The effect of the number of passes in friction stir processing of aluminum alloy (AA6082) and its failure analysis[J]. Applied Surface Science, 2019, 491: 420 − 431. doi: 10.1016/j.apsusc.2019.06.132
[9] 戴启雷, 王秀义, 侯振国, 等. 焊接速度对AA6082搅拌摩擦焊接头根部缺陷及性能的影响[J]. 焊接学报, 2015, 36(8): 27 − 30. Dai Qilei, Wang Xiuyi, Hou Zhenguo, et al. Effect of travel speed on the root-defects and mechanical properties of friction stir welded A6082 alloy joint[J]. Tansactions of the China Welding Instiution, 2015, 36(8): 27 − 30.
[10] Naumov A, Morozova I, Isupov F, et al. Temperature influence on microstructure and properties evolution of friction stir welded Al-Mg-Si alloy[J]. Key Engineering Materials, 2019, 822: 122 − 128. doi: 10.4028/www.scientific.net/KEM.822.122
[11] Zhu Rui, Gong Wenbiao, Cui Heng. Temperature evolution, microstructure, and properties of friction stir welded ultra-thick 6082 aluminum alloy joints[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(1−2): 331 − 343. doi: 10.1007/s00170-020-05422-7
[12] Lambiase F, Paoletti A, Di I A. Forces and temperature variation during friction stir welding of aluminum alloy AA6082-T6[J]. International Journal of Advanced Manufacturing Technology, 2018, 99: 337 − 346. doi: 10.1007/s00170-018-2524-6
[13] Silva-Magalhaes A, Backer J De, Martin J, et al. In-situ temperature measurement in friction stir welding of thick section aluminium alloys[J]. Journal of Manufacturing Processes, 2019, 39: 12 − 17. doi: 10.1016/j.jmapro.2019.02.001
-
期刊类型引用(19)
1. 谈珂威,缪康,郭春富. BaF对2507超级双相不锈钢电弧增材制造组织和力学性能的影响. 热加工工艺. 2025(06): 103-107 . 百度学术
2. 李科,林义民,王飞,易江龙,邹晓东,潘琳琳,牛犇. 固溶处理对电弧增材制造超级双相不锈钢微观组织及摩擦磨损性能的影响. 摩擦学学报(中英文). 2024(07): 893-902 . 百度学术
3. 刘爱国,刘震昊. 我国近10年双相不锈钢焊接研究进展分析. 焊接技术. 2024(08): 1-9 . 百度学术
4. 张志强,张宇航,张宏伟,马强,楚昊然,张永春. UNS S32750超级双相不锈钢激光焊接头微观组织与耐蚀性能. 焊接学报. 2023(04): 14-20+130 . 本站查看
5. 路学成,韩玉茹,张志强,白玉洁,张天刚,郭志永. 添加N_2保护对CMT-P复合电弧焊接头组织与性能的影响. 焊接学报. 2023(04): 63-70+133 . 本站查看
6. 刘剑,牛虎理,孙丽,何亚章,王红,孙欣妍. 热输入对超级双相不锈钢焊接接头组织和性能的影响. 石油工程建设. 2023(04): 89-92 . 百度学术
7. 张志强,楚昊然,张天刚,路学成,张宇航,郭志永. UNS S32750双相不锈钢焊接热影响区微观组织演变. 材料导报. 2023(21): 193-199 . 百度学术
8. 朱桂琴. Q500qENH高强度耐候钢焊接接头的组织与耐蚀性. 腐蚀与防护. 2023(10): 33-36+41 . 百度学术
9. 李科,牛犇,潘琳琳,易江龙,邹晓东. 热输入对电弧增材制造超级双相不锈钢组织与性能的影响. 焊接学报. 2023(10): 94-101+138 . 本站查看
10. 高成龙,徐祥久. 加热温度对双相不锈钢2594堆焊层组织及性能的影响. 锅炉制造. 2022(01): 42-44+64 . 百度学术
11. 栗宏伟,赵志毅,薛润东. 热输入对SAF2507超级双相不锈钢焊接接头显微组织及硬度的影响. 焊接学报. 2022(02): 20-26+114 . 本站查看
12. 孙清洁,李富祥,冀永壮,刘一搏,靳鹏,任惠圣. 磁场作用下2205双相不锈钢焊缝成形与组织特征. 焊接学报. 2022(04): 26-31+49+114 . 本站查看
13. 冯玉兰,吴志生,李岩,李亚杰,王瑞森. 固溶处理温度对2507不锈钢焊接接头组织与性能的影响. 焊管. 2021(04): 42-46 . 百度学术
14. 武建朝,左世飞,刘思玲,延雨龙. 25Cr-7Ni-4Mo型双相不锈钢接头组织及焊接质量控制. 机械制造文摘(焊接分册). 2021(04): 17-21+33 . 百度学术
15. 张志强,荆洪阳,徐连勇,张天刚,徐誉桐. 铁素体/奥氏体双相不锈钢焊接接头组织和性能的研究进展. 材料热处理学报. 2020(05): 13-27 . 百度学术
16. 丛发敏,夏春智,刘鹏. 固溶处理对S31803钢TIG焊缝组织与腐蚀性能的影响. 焊接. 2020(02): 20-23+66 . 百度学术
17. 张志强,荆洪阳,徐连勇,张天刚,徐誉桐. UNS S32205双相不锈钢焊接接头力学性能研究. 热加工工艺. 2020(19): 21-25 . 百度学术
18. 柳阳,李国平,王立新,赵振铎,范光伟. S32750超级双相不锈钢TIG自熔焊接接头组织及力学性能. 焊接. 2020(06): 18-22+62 . 百度学术
19. 高成龙,李宪爽. 热处理工艺对双相钢带极埋弧堆焊层组织及性能的影响. 机械制造文摘(焊接分册). 2020(05): 11-15 . 百度学术
其他类型引用(2)