Material flow behavior during bobbin-tool friction stir welding of aluminum alloy
-
摘要: 由于下轴肩的引入,双轴肩搅拌摩擦焊(BT-FSW)过程中的材料流动行为较常规搅拌摩擦焊更为剧烈和复杂,显著影响接头力学性能. 以2219铝合金为研究对象,基于耦合欧拉-拉格朗日方法建立了BT-FSW过程三维热力耦合模型,并利用示踪粒子技术分析了焊接过程中材料的流动行为. 结果表明,BT-FSW过程中的材料流动存在不同时性,靠近轴肩的材料先开始运动,且流动剧烈,随着逐渐远离轴肩位置,材料流动愈加滞后,但流动状态更加平稳;水平方向上前进侧材料作为剪切层内侧材料,绕搅拌针旋转后大部分沉积于搅拌头后方前进侧区域,而后退侧材料仅受到剪切层内侧材料的带动,进而被旋推至后方沉积;厚度方向上塑性材料在抵达搅拌头后方焊缝中心线前流动较弱,随后材料受到上、下轴肩挤压向板材中心流动.
-
关键词:
- 双轴肩搅拌摩擦焊 /
- 铝合金 /
- 耦合欧拉-拉格朗日方法 /
- 示踪 /
- 材料流动行为
Abstract: Compared with friction stir welding (FSW), the material flow behavior during the bobbin-tool FSW (BT-FSW) process is more intense and complicated due to the presence of lower shoulder, which severely affects the mechanical properties of the joint. In this paper, a 3D thermo-mechanical coupling model of BT-FSW 2219 aluminum alloy was established based on the coupled Eulerian-Lagrangian (CEL) method and the material flow behavior during the BT-FSW process was investigated by using tracer particles. The results show that the material flow in the BT-FSW process is inconsistent. The material near both shoulders moves in advance, showing violent behavior. The farther away from the shoulder, the more lagging and stable material flow. As the inner material of the shear layer, the material on the advancing side of the weld rotates around the pin in the horizontal direction and most is deposited on the advancing side area behind the tool. While the material on the retreating side is only driven by the material in the inner layer of the shear layer, and most is pushed to deposit behind the weld. In the thickness direction, the plastic material shows weak flow before reaching the welding center line behind the tool. And the material is squeezed by both shoulders to flow toward the center of the plate after it enters the advancing side area behind the tool. -
-
表 1 2219-T87铝合金Johnson-Cook本构参数
Table 1 Material parameters in Johnson-Cook constitutive model for 2219-T87 aluminum alloy
准静态拉伸屈服
强度A/MPa应变硬化系数
B/MPa应变硬化
指数n应变速率硬化
系数C参考应变速率 ${\dot \varepsilon _{\rm{0}}}$ /s−1热软化
指数m材料熔点
Tm/℃室温
Tr/℃170 228 0.31 0.028 0.001 2.75 543 25 -
[1] Thomas W M, Nicholas E D, Needham J C, et al. Improvements relating to friction welding: EP19940120385[P]. 1995-07-05.
[2] Thomas W M, Nicholas E D, Needham J C, et al. Friction stir butt welding: US5460317[P]. 1995-10-24.
[3] 周利, 刘朝磊, 王计, 等. 双轴肩搅拌摩擦焊技术研究现状[J]. 焊接, 2015(6): 14 − 18. doi: 10.3969/j.issn.1001-1382.2015.06.006 Zhou Li, Liu Chaolei, Wang Ji, et al. Research progress in self-reacting friction stir welding technology[J]. Welding & Joining, 2015(6): 14 − 18. doi: 10.3969/j.issn.1001-1382.2015.06.006
[4] Zhao S, Bi Q Z, Wang Y H, et al. Empirical modeling for the effects of welding factors on tensile properties of bobbin tool friction stir-welded 2219-T87 aluminum alloy[J]. International Journal of Advanced Manufacturing Technology, 2017, 90: 1105 − 1118. doi: 10.1007/s00170-016-9450-2
[5] Li Gaohui, Zhou Li, Zhang Haifeng, et al. Effects of traverse speed on weld formation, microstructure and mechanical properties of ZK60 Mg alloy joint by bobbin tool friction stir welding[J/OL]. Chinese Journal of Aeronautics, 2020. https://doi.org/ 10.1016/j.cja.2020.05.037.
[6] Li W Y, Fu T, Huetsch L, et al. Effects of tool rotational and welding speed on microstructure and mechanical properties of bobbin-tool friction-stir welded Mg AZ31[J]. Materials & Design, 2014, 64(12): 714 − 720.
[7] Liu X C, Wu C S, Padhy G K. Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding[J]. Scripta Materialia, 2015, 102: 95 − 98. doi: 10.1016/j.scriptamat.2015.02.022
[8] Xu W F, Liu H J, Chen D L. Material flow and core/multi-shell structures in a friction stir welded aluminum alloy with embedded copper markers[J]. Journal of Alloys and Compounds, 2011, 509(33): 8449 − 8454. doi: 10.1016/j.jallcom.2011.05.118
[9] 龙玲, 史清宇, 刘铁, 等. 搅拌摩擦焊接材料流动模型及在缺陷预测中的应用[J]. 焊接学报, 2019, 40(1): 84 − 88. doi: 10.12073/j.hjxb.2019400017 Long Ling, Shi Qingyu, Liu Tie, et al. Modeling of material flow during friction stir welding and the application for defect prediction[J]. Transactions of the China Welding Institution, 2019, 40(1): 84 − 88. doi: 10.12073/j.hjxb.2019400017
[10] 胡晓晴. 基于示踪材料的双轴肩搅拌摩擦焊流场研究[D]. 镇江: 江苏科技大学, 2015. Hu Xiaoqing. Research on the flow field of bobbin tool friction stir welding based on tracer material[D]. Zhenjiang: Jiangsu University of Science and Technology, 2015.
[11] Hilgert J, Dos Santos J F, Huber N. Shear layer modelling for bobbin tool friction stir welding[J]. Science and Technology of Welding & Joining, 2010, 17(6): 454 − 459.
[12] 李继忠, 赵华夏, 栾国红. 铝合金搅拌摩擦焊物理场三维数值模拟[J]. 焊接学报, 2016, 37(5): 15 − 18. Li Jizhong, Zhao Huaxia, Luan Guohong. 3D numerical simulation of physical fields of friction stir welding for aluminum alloy[J]. Transactions of the China Welding Institution, 2016, 37(5): 15 − 18.
[13] Singh P, Biswas P, Kore S D. A three-dimensional fully coupled thermo- mechanical model for self-reacting friction stir welding of aluminium AA6061 sheets[J]. Journal of Physics Conference Series, 2016, 759(1): 1 − 6.
[14] 王非凡. Al-Li合金双轴肩搅拌摩擦焊成形机制及性能研究[D]. 西安: 西北工业大学, 2016. Wang Feifan. Investigation on joint formation mechanism and mechanical properties of bobbin tool friction stir welding of Al-Li alloys[D]. Xi’an: Northwestern Polytechnical University, 2016.
[15] Wen Q, Li W Y, Gao Y J, et al. Numerical simulation and experimental investigation of band patterns in bobbin tool friction stir welding of aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100: 2679 − 2687. doi: 10.1007/s00170-018-2750-y
[16] 陈高强, 史清宇. 搅拌摩擦焊中材料流动行为数值模拟的研究进展[J]. 机械工程学报, 2015, 51(22): 11 − 21. doi: 10.3901/JME.2015.22.011 Chen Gaoqiang, Shi Qingyu. Recent advances in numerical simulation of material flow behavior during frictions stir welding[J]. Journal of Mechanical Engineering, 2015, 51(22): 11 − 21. doi: 10.3901/JME.2015.22.011
[17] Bastier A, Maitournam M H, Van K D. Steady state thermalmechnical modelling of friction stir welding[J]. Scinece and Technology of Welding & Joining, 2006, 11(3): 278 − 288.
[18] 武传松, 宿浩, 石磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟[J]. 金属学报, 2018, 54(2): 265 − 277. doi: 10.11900/0412.1961.2017.00294 Wu Chuansong, Su Hao, Shi Lei. Numerical simulation of heat generation, heat transfer and material flow in friction stir welding[J]. Acta Metallurgica Sinica, 2018, 54(2): 265 − 277. doi: 10.11900/0412.1961.2017.00294
[19] Cao J Y, Wang M, Kong L, et al. Numerical modeling and experimental investigation of material flow in friction spot welding of Al 6061-T6[J]. International Journal of Advanced Manufacturing Technology, 2016, 89: 2129 − 2139.
[20] 徐韦锋, 刘金合, 朱宏强. 2219铝合金厚板搅拌摩擦焊接温度场数值模拟[J]. 焊接学报, 2010, 31(2): 63 − 66. Xu Weifeng, Liu Hejin, Zhu Hongqiang. Numerical simulation of thermal field of friction stir welded 2219 aluminum alloy thick plate[J]. Transactions of the China Welding Institution, 2010, 31(2): 63 − 66.
[21] 张子群. 铝合金2219弧板件铣削力建模及其对残余应力的影响规律研究[D]. 济南: 山东大学, 2018. Zhang Ziqun. Milling force modeling of alloy 2219 arc plates and its influence on residual stress[D]. Jinan: Shandong University, 2018.
[22] Tutunchilar S, Haghpanahi M, Besharati Givi M K, et al. Simulation of material flow in friction stir processing of a cast Al-Si alloy[J]. Materials & Design, 2012, 40: 415-426.
[23] Wang H, Colegrove P A, Dos Santos J F. Numerical investigation of the tool contact condition during friction stir welding of aerospace aluminium alloy[J]. Computational Materials Science. 2013, 71: 101-108.
[24] 朱智, 王敏, 张会杰, 等. 基于CEL方法搅拌摩擦焊材料流动及缺陷的模拟[J]. 中国有色金属学报, 2018, 28(2): 294 − 299. Zhu Zhi, Wang Min, Zhang Huijie, et al. Simulation on material flow and defect during friction stir welding based on CEL method[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(2): 294 − 299.
[25] Zhang H J, Wang M, Zhang X, et al. Microstructural characteristics and mechanical properties of bobbin tool friction stir welded 2A14-T6 aluminum alloy[J]. Materials & Design, 2015, 65: 559 − 566.
[26] Esmaily M, Mortazavi N, Osikowicz W, et al. Bobbin and conventional friction stir welding of thick extruded AA6005-T6 profiles[J]. Materials & Design, 2016, 108: 114 − 125.
[27] Zhou L, Li G H, Liu C L, et al. Microstructural characteristics and mechanical properties of Al-Mg-Si alloy self-reacting friction stir welded joints[J]. Science and Technology of Welding and Joining, 2017, 22(5): 438 − 445. doi: 10.1080/13621718.2016.1251733