Research progress of high-entropy amorphous materials and their additive manufacturing technology
-
摘要: 高熵非晶合金具有独特的物理、化学和力学性能以及更好的热稳定性,因而其制备技术成为国内外重要的研究热点之一. 然而利用传统技术制备高熵非晶材料时会产生晶粒粗大及材料浪费等缺点,难以满足工艺生产需要. 而增材制造技术的精准制造和快速冷却等特点可以解决这一问题,制备出各项性能优越的高熵非晶合金. 简要介绍了高熵非晶材料的研究体系和常用制造方法,着重阐述了高熵非晶材料的断裂强度、耐腐蚀性和热稳定性的研究,对增材制造技术的工艺特征和优势,以及利用增材制造技术制备高熵非晶合金的科学难点作出了总结. 结果表明,利用增材制造技术有利于获得致密均匀的高熵非晶材料,但对于非晶相形成的解释仅限于高熵合金4大效应.最后阐述了近年来利用常用的两种增材制造手段制造高熵非晶合金的研究,并对增材制造技术制备高熵非晶材料的发展趋势提出了展望.Abstract: High-entropy amorphous alloys (HEAAs) exhibit unique physical, chemical and mechanical properties as well as better thermal stability. Thus, its fabrication technology has become one of the important research hotspots at home and abroad. However, high-entropy amorphous materials manufactured by traditional technology had defects such as coarse crystal grains and material waste, which was difficult to meet the needs of processing production. The precise manufacturing and rapid cooling of additive manufacturing technology could solve the problems, and produce high entropy amorphous alloys with superior properties. This review research briefly introduced the research system and common preparation methods of high-entropy amorphous materials. It mainly focused on the research about fracture strength, corrosion resistance and thermal stability of high-entropy amorphous materials. The process features and advantages of additive manufacturing technology, and the scientific difficulties for applying this technology to fabricate high-entropy amorphous alloys were summarized. The results showed that additive manufacturing technology contributed to high-entropy amorphous materials with dense and uniform microstructures, while the explanation for the formation of amorphous phases was limited to the four effects of high-entropy alloys, Finally, a discussion with two additive manufacturing methods commonly used in the fabrication of high-entropy amorphous materials in recent years was made. Furthermore, the prospects for the development trend of fabricating high-entropy amorphous materials by additive manufacturing technology were put forward.
-
Keywords:
- high-entropy alloy /
- amorphous phase /
- additive manufacturing /
- grain refinement
-
0. 序言
铝/镁复合结构具有密度低、比强度高以及电磁屏蔽效应等优点,广泛应用于航空航天、轨道交通等装备制造业领域[1-3]. 铝/镁异种金属焊接时,接头易形成脆性IMCs,严重降低接头力学性能,是铝/镁异种金属连接亟待解决的难题[4-5]. FSW属于固相连接技术,可有效避免铝/镁异种金属熔化焊时出现气孔、热裂纹及热影响区(heat affected zone, HAZ)软化等问题[6-8],同时可抑制接头中脆性IMCs的形成,在铝/镁异种金属连接方面最具发展潜力[9-10].
近年来,国内外众多学者对铝/镁异种金属FSW开展大量研究,主要集中在:一是优化焊接工艺,控制转速和焊接速度改善母材塑性流动行为进而改善接头微观组织;二是引入中间层元素,对接头中IMCs种类、数量及分布进行调控,进一步提高接头强度. 研究结果表明[11-13],优化工艺参数仍无法有效避免脆性Al-Mg系IMCs的生成. 因此,近年来,引入中间层元素成为铝/镁异种金属FSW研究领域的热点. Niu 等人[14]和Gan等人[15]研究了锌中间层对铝/镁异种金属FSW接头微观组织分布特征的影响,结果表明,引入锌中间层改变了IMCs种类,接头中弥散分布的Mg-Zn IMCs代替了脆性Al-Mg系IMCs,接头抗剪强度明显提高. Zheng等人[16]研究了锡中间层对铝/镁异种金属FSW搭接接头微观组织和力学性能的影响. 结果表明,含锡接头中生成了Mg2Sn,取代了Al-Mg系IMCs,接头最大断裂载荷达3.72 kN. Liu等人[17]探讨了锌中间层厚度对铝/镁FSW接头抗拉强度的影响规律,研究发现,当中间层厚度为0.05 mm时,接头中连续分布的Al-Mg系IMCs被Mg-Zn系IMCs和Al-Mg-Zn三元系共晶组织完全取代,接头抗拉强度最高.
文献[18]表明Ni在Al和Mg中具有相当大的溶解度,在640和506 ℃时分别发生共晶反应生成Al-Ni系和Mg-Ni系IMCs. 基于此,引入0.05 mm镍中间层,采用不同FSW焊接工艺参数对铝/镁异种金属进行平板对接,对接头进行系列微观组织表征及力学性能测试,探讨工艺参数对接头中镍分布状态、IMCs种类与分布及接头强度的影响规律.
1. 试验方法
试验材料选用厚度为4 mm的AZ31镁合金和6061铝合金(供货状态T6),化学成分如表1所示. 焊件尺寸为280 mm × 150 mm × 4 mm,焊接方式为平板对焊,FSW装配示意图如图1所示. 搅拌针材质为H13钢,轴肩直径12 mm,根部直径5 mm,端部直径2 mm,针长3.7 mm. 镁合金置于前进侧,焊接工艺参数如表2所示. 金相试样用4%的硝酸酒精腐蚀镁侧10 s,用Keller试剂(6 mL HCl + 2.5 mL HNO3 + 1 mL HF)腐蚀铝侧90 s. 采用SU8010型扫描电镜(scanning electron microscope, SEM)对FSW接头微观组织进行分析,借助E1506-C2B型能谱仪(energy dispersive spectrometer, EDS)和D8 ADVANCE型X射线衍射仪(X-ray diffractometer, XRD)对接头中IMCs种类进行精确表征. 采用CMT5105型微机控制电子万能试验机对接头进行抗拉强度测试,拉伸速率为0.5 mm/min,为保证实验数据可靠性,每种焊接条件下制备了3组平行试样,测试结果取均值.
表 1 6061铝合金和AZ31镁合金的化学成分(质量分数,%)Table 1. Chemical compositions of 6061 aluminum alloys and AZ31 magnesium alloys材料 Si Fe Cu Mn Cr Zn Ti Ni Al Mg 6061 0.55 0.4 0.25 0.074 0.08 0.12 0.08 — 余量 0.8 AZ31 0.28 0.001 0.002 0.33 — 0.71 — 0.0005 2.8 余量 表 2 焊接工艺参数Table 2. Welding process parameters转速
n/(r·min−1)焊接速度
v/(mm·min−1)偏铝侧偏移量
d/mm下压量
h/mm倾角
α(°)450,550,650,
750,85020 0.3 0.2 2.5 2. 结果与讨论
2.1 引入镍中间层FSW接头微观组织
图2为不同转速下引入镍中间层铝/镁FSW接头WNZ微观组织形貌. 从图2可以看出,WNZ内母材发生明显的塑性流动而形成带状组织[19],转速不同,带状组织形貌不同.
当转速为450 r/min时,由于转速相对较低,热输入不足,致使母材塑性流动不充分,在WNZ内铝合金基体中分布着大量未完全破碎的片状镍箔颗粒,如图2a所示. 当转速增加到550 r/min时,母材塑性流动能力增强,大片状镍箔颗粒数量有所减少,且分布较为离散,如图2b所示. 转速增至850 r/min时,由于热输入过高,热塑性金属在搅拌针搅拌和轴肩挤压的双重作用下沿轴肩边缘溢出,使得WNZ内母材塑化体积减小,从而在该区域内形成了“隧道型空洞”[4].
在转速650和750 r/min时得到铝/镁异种金属FSW接头中WNZ微观组织上未观察到明显缺陷,形成了良好的机械互锁且镍元素分布较为均匀,如图2c和图2d所示. 从图2可以看出,随着转速增加,镍元素在WNZ内分布愈加均匀,但接头仍然存在片状镍箔颗粒. 相比转速650 r/min,转速为750 r/min的接头WNZ中带状组织机械互锁程度更高,而接头强度很大程度上取决于带状组织[20].
为进一步探明接头WNZ中带状组织的微观组织构成,对转速为750 r/min时接头WNZ微观组织进行SEM观察,如图3所示. 图3a为WNZ近镁侧边界处的微观组织形貌,图3b和图3c为相应的放大视图,可以看出,WNZ由呈明暗交替的黑色条带和白色IMCs所构成. 为确定IMCs种类,对接头WNZ进行XRD分析,结果如图4所示. 从图4可以看出,铝/镁异种金属FSW接头中IMCs主要为Al3Mg2,Al12Mg17及Mg2Ni,但未发现Al-Ni系IMCs. 这是由于Al-Ni系IMCs的最低生成温度约为640 ℃[21],高于铝/镁异种金属正常FSW工艺条件下的峰值温度,在焊接过程中难以形成所致.
为进一步确定接头中IMCs种类,选取图3所示5个位置,对WNZ典型IMCs进行了EDS分析,其EDS结果如表3所示. 由表3可知,白色絮状IMCs为Al12Mg17,颗粒状IMCs为Mg2Ni,灰色层状IMCs为Al3Mg2. 综上所示,镍中间层可以改变铝/镁异种金属FSW接头IMCs种类,生成颗粒状Mg2Ni抑制脆性层状Al3Mg2的形成.
表 3 WNZ内典型IMCs EDS分析结果(原子分数,%)Table 3. EDS results of typical IMCs in WNZ位置 Al Mg Ni 相 1 57.52 42.28 0.20 Al3Mg2 2 56.29 42.60 1.11 Al3Mg2 3 3.02 96.52 0.46 Mg基体 4 35.27 64.62 0.11 Al12Mg17 + Mg 5 2.16 92.47 5.37 Mg2Ni + Mg 图5为不同焊接工艺参数下铝/镁异种金属FSW接头WNZ微观组织形貌. 当转速为450 r/min时,大量镁合金条带在搅拌针的作用下沉积于WNZ底部,降低了母材的冶金结合. 当转速增加至550 r/min时,接头冶金结合效果明显改善,但大量脆性层状Al3Mg2呈长而直形态连续分布于近镁合金侧热力影响区(thermo mechanical affected zone, TMAZ)和WNZ边界处,如图5b所示. 由于Al3Mg2具有较大的室温脆性[22],在拉伸加载过程中裂纹往往于此处萌生扩展. 此外,当转速增加到650和750 r/min时,脆性层状Al3Mg2数量显著减少,且其连续分布状态得到明显改善,在WNZ内呈断续分布,如图5c和图5d所示. 由于Mg2Ni先于Al3Mg2形成[23],而Ni在WNZ内的均匀分布,促进了Mg和Ni的结合,从而抑制了脆性层状Al3Mg2的形成.
2.2 引入镍中间层FSW接头力学性能
图6为不同转速下引入镍中间层铝/镁异种金属FSW接头工程应力—应变曲线和抗拉强度. 从图6可以看出,随着转速增加,接头抗拉强度先增大后减小,当转速为750 r/min时,接头抗拉强度达到最大值121 MPa. 在较低转速下,由于材料混合不充分,致使WNZ出现“隧道型空洞”,降低了接头冶金结合效果. 在拉伸过程中,缺陷边缘处存在应力集中,严重影响接头强度. 此外,由图5b可知,在近镁合金侧TMAZ和WNZ边界处存在大量连续分布的脆性层状Al3Mg2,为裂纹的萌生和扩展提供了有利场所,加速了接头断裂失效,所以其抗拉强度较低,如图6b所示. 而在转速650 r/min下得到的FSW接头,虽无任何明显缺陷且脆性Al3Mg2数量及分布状态得到显著改善,但由于在其WNZ内存在较大体积未发生冶金反应的铝合金条带(图2c),一定程度上阻碍了母材的有效结合,机械互锁效应减弱,使得拉伸加载过程中相邻区域变形不协调,产生应力集中,加速裂纹的萌生和扩展.
当转速增加至850 r/min时,热塑性变形金属以“飞边”形式于轴肩边缘溢出,使得其在WNZ形成了“隧道型空洞”缺陷,严重降低接头强度. 而当转速为750 r/min时,接头WNZ组织均匀致密,形成了良好的机械互锁,镍的分布更加均匀,有效抑制了脆性层状Al3Mg2的生成,且断续的Al3Mg2在WNZ内呈弥散分布,显著增加了裂纹扩展阻力,因而其具有最高抗拉强度,达到镁合金的56.9%.
2.3 未引入镍中间层FSW接头组织和力学性能
图7为转速750 r/min、焊接速度20 mm/min下铝/镁异种金属FSW接头WNZ微观组织形貌. 从图7可以看出,未引入镍中间层接头WNZ存在大量呈长而直形态连续分布的脆性层状Al3Mg2,在拉伸加载过程中裂纹往往形核于此,并依附于脆性IMCs迅速扩展,严重降低接头强度,接头抗拉强度仅65 MPa,如图6b所示. 而引入镍中间层接头WNZ内Al3Mg2含量显著减少,且多为断续形态弥散分布于WNZ内,增大了裂纹扩展阻力. 此外,由于Mg-Ni系IMCs较于Al-Mg系IMCs具有较低的脆硬性[24],因而其接头强度较高.
3. 结论
(1) 与未引入中间层接头相比,引入镍改变了铝/镁异种金属FSW接头WNZ中IMCs种类及分布,WNZ存在明显的镁合金与铝合金相间的带状组织,其上分布着絮状Al12Mg17、颗粒状Mg2Ni、层状Al3Mg2及大小不一的镍箔颗粒.随着转速增加,镍箔颗粒分布愈加均匀,Al3Mg2数量相对减少,且脆性Al3Mg2由连续分布逐渐演变为断续分布.
(2) 当转速为750 r/min时,接头抗拉强度达到最大值,与未引入中间层接头相比,引入镍中间层接头抗拉强度提高了56 MPa,达到镁合金的56.9%.
-
表 1 典型高熵非晶合金系
Table 1 Typical high-entropy amorphous alloy system
高熵非晶合金系 制备方法 临界尺寸d/mm Zr41.2Ti13.8Cu12.5Ni10Be22.5[24] 浇铸法 >50 Ti20Zr20Hf20Cu20Ni20[23] 铜模铸造法 1.5 Sr20Ca20Yb20Mg20Zn20[25] 铜模铸造法 4 Er20Tb20Dy20Ni20Al20[25] 铜模铸造法 2 Pd20Pt20Cu20Ni20P20[26] 熔渣包覆水淬法 10 Fe20Si20B20Al20Ni20[27] 球磨法 — Ti20Zr20Cu20Ni20Be20[28] 铜模铸造法 3 CoCrCuFeNiZr0.6[4] 熔体快淬法 — Fe25Co25Ni25(B,Si)25[29] 铜模铸造法 1.5 Er18Gd18Y20Al24Co20[30] 铜模铸造法 5 Fe25Co25Ni25Mo5P10B10[31] 熔体快淬法 1.2 (Fe1/3Co1/3Ni1/3)80(P1/2B1/2)20[32] 熔体快淬法 2 Fe46.8Mo22.7Cr13.6Co7.6C4.8B2.3Y1.2Si1.0[33] 激光熔覆 — -
[1] Wang W. High-entropy metallic glasses[J]. Jom, 2014, 66(10): 2067 − 2077. doi: 10.1007/s11837-014-1002-3
[2] Xie L, Xiong X, Zeng Y, et al. The wear properties and mechanism of detonation sprayed iron-based amorphous coating[J]. Surface and Coatings Technology, 2019, 366: 146 − 155. doi: 10.1016/j.surfcoat.2019.03.028
[3] Yeh J W, Chen Y L, Lin S J, et al. High-entropy alloys-A new era of exploitation[J]. Materials Science Forum, 2007, 560: 1 − 9.
[4] Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase[J]. Intermetallics, 2013, 41: 96 − 103. doi: 10.1016/j.intermet.2013.05.002
[5] Yuan Z, Tian W, Li F, et al. Microstructure and properties of high-entropy alloy reinforced aluminum matrix composites by spark plasma sintering[J]. Journal of Alloys and Compounds, 2019, 806: 901 − 908. doi: 10.1016/j.jallcom.2019.07.185
[6] Zhou K, Sun B, Liu G, et al. FeCoNiAlSi high entropy alloys with exceptional fundamental and application-oriented magnetism[J]. Intermetallics, 2020, 122: 106801. doi: 10.1016/j.intermet.2020.106801
[7] Li H, Xie X, Zhao K, et al. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass[J]. Acta Biomaterialia, 2013, 9(10): 8561 − 8573. doi: 10.1016/j.actbio.2013.01.029
[8] Butler T M, Weaver M L. Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys[J]. Journal of Alloys and Compounds, 2016, 674: 229 − 244. doi: 10.1016/j.jallcom.2016.02.257
[9] Nagase T, Mizuuchi K, Nakano T. Solidification microstructures of the ingots obtained by arc melting and cold crucible levitation melting in TiNbTaZr medium-entropy alloy and TiNbTaZrX (X= V, Mo, W) high-entropy alloys[J]. Entropy, 2019, 21(5): 483. doi: 10.3390/e21050483
[10] Zhang P, Li Y, Chen Z, et al. Oxidation response of a vacuum arc melted NbZrTiCrAl refractory high entropy alloy at 800–1 200 ℃[J]. Vacuum, 2019, 162: 20 − 27. doi: 10.1016/j.vacuum.2019.01.026
[11] Hou L, Hui J, Yao Y, et al. Effects of boron content on microstructure and mechanical properties of AlFeCoNiBx high entropy alloy prepared by vacuum arc melting[J]. Vacuum, 2019, 164: 212 − 218.
[12] Wang H, Zhu Z, Chen H, et al. Effect of cyclic rapid thermal loadings on the microstructural evolution of a CrMnFeCoNi high-entropy alloy manufactured by selective laser melting[J]. Acta Materialia, 2020, 196: 609 − 625. doi: 10.1016/j.actamat.2020.07.006
[13] Wang Q, Amar A, Jiang C, et al. CoCrFeNiMo0.2 high entropy alloy by laser melting deposition: prospective material for low temperature and corrosion resistant applications[J]. Intermetallics, 2020, 119: 106727. doi: 10.1016/j.intermet.2020.106727
[14] Qiu X, Liu C. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding[J]. Journal of Alloys and Compounds, 2013, 553: 216 − 220. doi: 10.1016/j.jallcom.2012.11.100
[15] Yue T, Xie H, Lin X, et al. Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates[J]. Journal of Alloys and Compounds, 2014, 587: 588 − 593. doi: 10.1016/j.jallcom.2013.10.254
[16] Fu Z, Chen W, Fang S, et al. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering[J]. Journal of Alloys and Compounds, 2013, 553: 316 − 323. doi: 10.1016/j.jallcom.2012.11.146
[17] Chen Z, Chen W, Wu B, et al. Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering[J]. Materials Science and Engineering:A, 2015, 648: 217 − 224. doi: 10.1016/j.msea.2015.08.056
[18] Kang B, Lee J, Ryu H J, et al. Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process[J]. Materials Science and Engineering:A, 2018, 712: 616 − 624. doi: 10.1016/j.msea.2017.12.021
[19] Rane K, Strano M. A comprehensive review of extrusion-based additive manufacturing processes for rapid production of metallic and ceramic parts[J]. Advances in Manufacturing, 2019, 7(2): 155 − 173. doi: 10.1007/s40436-019-00253-6
[20] 王磊磊, 张占辉, 徐得伟, 等. 双脉冲电弧增材制造数值模拟与晶粒细化机理[J]. 焊接学报, 2019, 40(4): 137 − 140,147. doi: 10.12073/j.hjxb.2019400114 Wang Leilei, Zhang Zhanhui, Xu Dewei, et al. Numerical simulation and mechanism study of grain refinement during double pulsed wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(4): 137 − 140,147. doi: 10.12073/j.hjxb.2019400114
[21] Mendoza M Y, Samimi P, Brice D A, et al. Microstructures and grain refinement of additive-manufactured Ti-xW alloys[J]. Metallurgical and Materials Transactions A, 2017, 48(7): 3594 − 3605. doi: 10.1007/s11661-017-4117-7
[22] Bermingham M, Stjohn D, Krynen J, et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing[J]. Acta Materialia, 2019, 168: 261 − 274. doi: 10.1016/j.actamat.2019.02.020
[23] Ma L, Wang L, Zhang T, et al. Bulk glass formation of Ti-Zr-Hf-Cu-M (M=Fe, Co, Ni) alloys[J]. Materials Transactions, 2002, 43(2): 277 − 280. doi: 10.2320/matertrans.43.277
[24] Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J]. Applied Physics Letters, 1993, 63(17): 2342 − 2344. doi: 10.1063/1.110520
[25] Gao X, Zhao K, Ke H, et al. High mixing entropy bulk metallic glasses[J]. Journal of Non-Crystalline Solids, 2011, 357(21): 3557 − 3560. doi: 10.1016/j.jnoncrysol.2011.07.016
[26] Takeuchi A, Chen N, Wada T, et al. Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter[J]. Intermetallics, 2011, 19(10): 1546 − 1554. doi: 10.1016/j.intermet.2011.05.030
[27] Wang J, Zheng Z, Xu J, et al. Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi (Nb) high entropy alloys[J]. Journal of Magnetism and Magnetic Materials, 2014, 355: 58 − 64. doi: 10.1016/j.jmmm.2013.11.049
[28] Ding H Y, Yao K F. High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass[J]. Journal of Non-Crystalline Solids, 2013, 364: 9 − 12. doi: 10.1016/j.jnoncrysol.2013.01.022
[29] Qi T, Li Y, Takeuchi A, et al. Soft magnetic Fe25Co25Ni25(B, Si)25 high entropy bulk metallic glasses[J]. Intermetallics, 2015, 66: 8 − 12. doi: 10.1016/j.intermet.2015.06.015
[30] Kim J, Oh H S, Kim J, et al. Utilization of high entropy alloy characteristics in Er-Gd-Y-Al-Co high entropy bulk metallic glass[J]. Acta Materialia, 2018, 155: 350 − 361. doi: 10.1016/j.actamat.2018.06.024
[31] Wu K, Liu C, Li Q, et al. Magnetocaloric effect of Fe25Co25Ni25Mo5P10B10 high-entropy bulk metallic glass[J]. Journal of Magnetism and Magnetic Materials, 2019, 489: 165404. doi: 10.1016/j.jmmm.2019.165404
[32] Li C, Li Q, Li M, et al. New ferromagnetic (Fe1/3Co1/3Ni1/3)80(P1/2B1/2)20 high entropy bulk metallic glass with superior magnetic and mechanical properties[J]. Journal of Alloys and Compounds, 2019, 791: 947 − 951. doi: 10.1016/j.jallcom.2019.03.375
[33] Hou X, Du D, Chang B, et al. Influence of scanning speed on microstructure and properties of laser cladded Fe-based amorphous coatings[J]. Materials, 2019, 12(8): 1279. doi: 10.3390/ma12081279
[34] Zhao K, Xia X, Bai H, et al. Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature[J]. Applied Physics Letters, 2011, 98(14): 141913. doi: 10.1063/1.3575562
[35] 陶娟. FeCoNi 基软磁高熵非晶合金及其相应的高熵合金的性能研究[D]. 郑州: 郑州大学, 2017. Tao Juan. Research on the properties of FeCoNi-based soft magnetic high-entropy amorphous alloy and its corresponding high-entropy alloy[D]. Zhengzhou: Zhengzhou University , 2017.
[36] Wang Y, Xie X, Li H, et al. Biodegradable CaMgZn bulk metallic glass for potential skeletal application[J]. Acta Biomaterialia, 2011, 7(8): 3196 − 3208. doi: 10.1016/j.actbio.2011.04.027
[37] Ding J, Inoue A, Han Y, et al. High entropy effect on structure and properties of (Fe, Co, Ni, Cr)-B amorphous alloys[J]. Journal of Alloys and Compounds, 2017, 696: 345 − 352. doi: 10.1016/j.jallcom.2016.11.223
[38] Wang H, Liu L, Dou Y, et al. Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy[J]. Applied Surface Science, 2013, 286: 319 − 327. doi: 10.1016/j.apsusc.2013.09.079
[39] Yang H, Gao Y, Qin W, et al. Microstructure and corrosion behavior of electroless Ni-P on sprayed Al-Ce coating of 3003 aluminum alloy[J]. Surface and Coatings Technology, 2015, 281: 176 − 183. doi: 10.1016/j.surfcoat.2015.10.001
[40] Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys[J]. Acta Materialia, 2011, 59(6): 2243 − 2267. doi: 10.1016/j.actamat.2010.11.027
[41] Lucas M S, Mauger L, Muñoz J A, et al. Magnetic and vibrational properties of high-entropy alloys[J]. Journal of Applied Physics, 2011, 109(7): 07E307. doi: 10.1063/1.3538936
[42] Silveyra J M, Ferrara E, Huber D L, et al. Soft magnetic materials for a sustainable and electrified world[J]. Science, 2018, 362(6413): 1 − 9.
[43] Huo J, Huo L, Li J, et al. High-entropy bulk metallic glasses as promising magnetic refrigerants[J]. Journal of Applied Physics, 2015, 117(7): 073902. doi: 10.1063/1.4908286
[44] Huo J, Huo L, Men H, et al. The magnetocaloric effect of Gd-Tb-Dy-Al-M (M=Fe,Coand Ni) high-entropy bulk metallic glasses[J]. Intermetallics, 2015, 58: 31 − 35. doi: 10.1016/j.intermet.2014.11.004
[45] Belyea D D, Lucas M, Michel E, et al. Tunable magnetocaloric effect in transition metal alloys[J]. Scientific Reports, 2015, 5(1): 1 − 8. doi: 10.9734/JSRR/2015/14076
[46] Satake M, Bitoh T. Synthesis of Fe-Co-Ni-(B, Si, C) ferromagnetic high entropy amorphous alloys and their thermal and magnetic properties[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65(7): 401 − 406. doi: 10.2497/jjspm.65.401
[47] George E P, Raabe D, Ritchie R O. High-entropy alloys[J]. Nature Reviews Materials, 2019, 4(8): 515 − 534. doi: 10.1038/s41578-019-0121-4
[48] Marques J G, Costa A L, Pereira C. Gibbs free energy (ΔG) analysis for the NaOH (sodium-oxygen-hydrogen) thermochemical water splitting cycle[J]. International Journal of Hydrogen Energy, 2019, 44(29): 14536 − 14549. doi: 10.1016/j.ijhydene.2019.04.064
[49] Liu W, Wu Y, He J, et al. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy[J]. Scripta Materialia, 2013, 68(7): 526 − 529. doi: 10.1016/j.scriptamat.2012.12.002
[50] Craievich P, Weinert M, Sanchez J, et al. Local stability of nonequilibrium phases[J]. Physical Review Letters, 1994, 72(19): 3076. doi: 10.1103/PhysRevLett.72.3076
[51] 杨铭, 刘雄军, 吴渊, 等. 高熵非晶合金研究进展[J]. 中国科学:物理学 力学 天文学, 2020, 50(6): 21 − 33. Yang Ming, Liu Xiongjun, Wu Yuan, et al. Research progress in high-entropy amorphous alloys[J]. Science in China: Physics Mechanics Astronomy, 2020, 50(6): 21 − 33.
[52] Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J]. Acta Materialia, 2013, 61(13): 4887 − 4897. doi: 10.1016/j.actamat.2013.04.058
[53] 王天琪, 李天旭, 李亮玉, 等. 复杂结构薄壁件电弧增材制造离线编程技术[J]. 焊接学报, 2019, 40(5): 42 − 47. doi: 10.12073/j.hjxb.2019400125 Wang Tianqi, Li Tianxu, Li Liangyu, et al. Off-line programming technology for arc additive manufacturing of thin-walled components with complex structures[J]. Transactions of the China Welding Institution, 2019, 40(5): 42 − 47. doi: 10.12073/j.hjxb.2019400125
[54] Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 2015, 87: 309 − 320. doi: 10.1016/j.actamat.2014.12.054
[55] 杨东青, 王小伟, 黄勇, 等. 熔化极电弧增材制造18Ni马氏体钢组织和性能[J]. 焊接学报, 2020, 41(8): 6 − 9,21. doi: 10.12073/j.hjxb.20200608002 Yang Dongqing, Wang Xiaowei, Huang Yong, et al. Microstructure and mechanical properties of 18Ni maraging steel deposited by gas metal arc additive manufacturing[J]. Transactions of the China Welding Institution, 2020, 41(8): 6 − 9,21. doi: 10.12073/j.hjxb.20200608002
[56] Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting[J]. Progress in Materials Science, 2019, 106: 100578. doi: 10.1016/j.pmatsci.2019.100578
[57] 苗玉刚, 曾阳, 王腾, 等. 基于BC-MIG焊的铝/钢异种金属增材制造工艺[J]. 焊接学报, 2015, 36(7): 5 − 8. Miao Yugang, Zeng Yang, Wang Teng, et al. Additive manufacturing process of aluminum / steel dissimilar metal based on BC-MIG welding[J]. Transactions of the China Welding Institution, 2015, 36(7): 5 − 8.
[58] 刘黎明, 贺雅净, 李宗玉, 等. 不同路径下316不锈钢电弧增材组织和性能[J]. 焊接学报, 2020, 41(12): 13 − 19. doi: 10.12073/j.hjxb.20200815002 Liu Liming, He Yajing, Li Zongyu, et al. Research on microstructure and mechanical properties of 316 stainless steel fabricated by arc additive manufacturing in different paths[J]. Transactions of the China Welding Institution, 2020, 41(12): 13 − 19. doi: 10.12073/j.hjxb.20200815002
[59] Aramian A, Razavi S M J, Sadeghian Z, et al. A review of additive manufacturing of cermets[J]. Additive Manufacturing, 2020, 33: 101130. doi: 10.1016/j.addma.2020.101130
[60] Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility[J]. Nature Materials, 2018, 17(1): 63 − 71. doi: 10.1038/nmat5021
[61] 尹燕, 赵超, 潘存良, 等. 气体流量对射频等离子体球化GH4169合金粉末的影响[J]. 焊接学报, 2019, 40(11): 100 − 105. doi: 10.12073/j.hjxb.2019400295 Yin Yan, Zhao Chao, Pan Cunliang, et al. Effect of gas flow rate on the characteristics of RF plasma spheroidized GH4169 alloy powder[J]. Transactions of the China Welding Institution, 2019, 40(11): 100 − 105. doi: 10.12073/j.hjxb.2019400295
[62] 要玉宏, 梁霄羽, 金耀华, 等. 硼对AlMo0.5NbTa0.5TiZr难熔高熵合金组织和高温氧化性能的影响[J]. 表面技术, 2020, 49(2): 235 − 242,287. Yao Yuhong, Liang Xiaoyu, Jin Yaohua, et al. Effect of B addition on microstructure and high temperature oxidation resistance of AlMo0.5NbTa0.5TiZr refractory high-entropy alloys[J]. Surface Technology, 2020, 49(2): 235 − 242,287.
[63] 杨阳祎玮, 易敏, 胥柏香. 粉末增材制造微结构的非等温相场模拟[J]. 中南大学学报(自然科学版), 2020, 51(11): 3019 − 3031. doi: 10.11817/j.issn.1672-7207.2020.11.003 Yangyang Yiwei, Yi Min, Xu Baixiang. Non-isothermal phase-field simulation of microstructure in powder-based additive manufacturing[J]. Journal of Central South University (Science and Technology), 2020, 51(11): 3019 − 3031. doi: 10.11817/j.issn.1672-7207.2020.11.003
[64] Pauly S, Löber L, Petters R, et al. Processing metallic glasses by selective laser melting[J]. Materials Today, 2013, 16(1−2): 37 − 41. doi: 10.1016/j.mattod.2013.01.018
[65] Pauly S, Schricker C, Scudino S, et al. Processing a glass-forming Zr-based alloy by selective laser melting[J]. Materials & Design, 2017, 135: 133 − 141.
[66] Guo J, Goh M, Zhu Z, et al. On the machining of selective laser melting CoCrFeMnNi high-entropy alloy[J]. Materials & Design, 2018, 153: 211 − 220.
[67] 石杰. 3D打印高熵合金—铁基非晶合金复合材料[D]. 武汉: 华中科技大学, 2019. Shi Jie. Processing high entropy alloy-Fe-based amorphous alloy composites by 3D-printing[D]. Wuhan: Huazhong University of Science and Technology , 2019.
[68] Jung H Y, Choi S J, Prashanth K G, et al. Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study[J]. Materials & Design, 2015, 86: 703 − 708.
[69] Di Ouyang , Li N, Xing W, et al. 3D printing of crack-free high strength Zr-based bulk metallic glass composite by selective laser melting[J]. Intermetallics, 2017, 90: 128 − 134.
[70] Song H, Lei J, Xie J, et al. Laser melting deposition of K403 superalloy: the influence of processing parameters on the microstructure and wear performance[J]. Journal of Alloys and Compounds, 2019, 805: 551 − 564. doi: 10.1016/j.jallcom.2019.07.102
[71] 李青宇, 李涤尘, 张航, 等. 激光熔覆沉积成形NbMoTaTi难熔高熵合金的组织与强度研究[J]. 航空制造技术, 2018, 61(10): 61 − 67. Li Qingyu, Li Dichen, Zhang Hang, et al. Study on structure and strength of NbMoTaTi refractory high entropy alloy fabricated by laser cladding deposition[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 61 − 67.
[72] 黄留飞, 孙耀宁, 季亚奇, 等. 激光熔化沉积AlCoCrFeNi2.5高熵合金的组织与力学性能研究[J]. 中国激光, 2021, 48(6): 103 − 110. Huang Liufei, Sun Yaoning, Ji Yaqi, et al. Investigation of microstructures and mechanical properties of laser-melting-deposited AlCoCrFeNi2.5 high entroy alloy[J]. Chinese Journal of Lasers, 2021, 48(6): 103 − 110.
[73] Shu F, Liu S, Zhao H, et al. Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder[J]. Journal of Alloys and Compounds, 2018, 731: 662 − 666. doi: 10.1016/j.jallcom.2017.08.248
[74] Shu F, Yang B, Dong S, et al. Effects of Fe-to-Co ratio on microstructure and mechanical properties of laser cladded FeCoCrBNiSi high-entropy alloy coatings[J]. Applied Surface Science, 2018, 450: 538 − 544. doi: 10.1016/j.apsusc.2018.03.128
-
期刊类型引用(10)
1. 邵善家,李延葆,米大为. 压水堆堆内构件钴基合金堆焊组织和性能研究. 焊接技术. 2025(03): 82-86 . 百度学术
2. 杨文选,王玥,郭玲玲,李佳乐,徐超. 进给距离对激光-电复合熔覆层组织及性能的影响. 激光与红外. 2024(02): 202-207 . 百度学术
3. 任维泽,段绪星,裴泽宇,陈青,赵子锐. 激光熔覆钴基合金研究进展及其在核领域的应用展望. 金属热处理. 2024(04): 264-273 . 百度学术
4. 陈乐,洪晓峰,魏光强,丁睿智,古博,宁方强. 激光熔覆Stellite 6合金涂层的耐磨耐蚀性能研究. 激光杂志. 2024(06): 210-214 . 百度学术
5. 卞宏友,王美男,刘伟军,邢飞,王慧儒,徐效文,霍庆生. DZ125合金激光沉积CoCrW涂层的组织与性能. 热加工工艺. 2024(19): 121-127+131 . 百度学术
6. 赵天碕,赵吉宾,何振丰,王志国,赵宇辉,陈燕. 304LN表面沉积异质合金过程多组元传输行为数值模拟. 表面技术. 2024(19): 141-152 . 百度学术
7. 张楷,高辉,林渊浩,邵明启. 基于RSM和NSGA-Ⅱ算法的同轴送粉氩弧熔覆工艺参数分析. 焊接学报. 2024(12): 106-116 . 本站查看
8. 田鹿岩,李新梅,路国闯. 42crmo钢表面激光熔覆Stellite6复合熔覆层组织及性能. 应用激光. 2024(12): 29-37 . 百度学术
9. 乔园园,袁正武,刘年明,刘卓谞,梁蕊. 下承式钢结构拱桥拱肋焊接质量控制研究. 焊接技术. 2023(05): 160-164 . 百度学术
10. 杨高林,郑权航,钱浩凯,樊文,张群莉,石岳林,姚建华. 宽高比对激光熔覆道间熔合不良的影响机制及改善策略. 焊接学报. 2023(10): 49-56+135-136 . 本站查看
其他类型引用(10)