高级检索

Zn挥发对Ag-Cu-Zn钎料在TiC-Ni金属陶瓷表面润湿性的影响

李玉龙, 吴昊樾, 雷敏

李玉龙, 吴昊樾, 雷敏. Zn挥发对Ag-Cu-Zn钎料在TiC-Ni金属陶瓷表面润湿性的影响[J]. 焊接学报, 2021, 42(6): 1-6. DOI: 10.12073/j.hjxb.20201130001
引用本文: 李玉龙, 吴昊樾, 雷敏. Zn挥发对Ag-Cu-Zn钎料在TiC-Ni金属陶瓷表面润湿性的影响[J]. 焊接学报, 2021, 42(6): 1-6. DOI: 10.12073/j.hjxb.20201130001
LI Yulong, WU Haoyue, LEI Min. Influence of Zn evaporation on wetting of Ag-Cu-Zn brazing alloy on TiC-Ni cermet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 1-6. DOI: 10.12073/j.hjxb.20201130001
Citation: LI Yulong, WU Haoyue, LEI Min. Influence of Zn evaporation on wetting of Ag-Cu-Zn brazing alloy on TiC-Ni cermet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 1-6. DOI: 10.12073/j.hjxb.20201130001

Zn挥发对Ag-Cu-Zn钎料在TiC-Ni金属陶瓷表面润湿性的影响

基金项目: 国家自然科学基金资助项目(52065043);中国国家留学基金管理委员会(201806825086);江西省自然科学基金青年项目(20202BAB214020)
详细信息
    作者简介:

    李玉龙,博士,教授,博士研究生导师;主要从事钎焊、特种焊接及光纤传感等方向的研究;Email:liyulong@ncu.edu.cn

    通讯作者:

    雷敏,博士,讲师;Email:leimin@ncu.edu.cn.

  • 中图分类号: TG 454

Influence of Zn evaporation on wetting of Ag-Cu-Zn brazing alloy on TiC-Ni cermet

  • 摘要: 采用Ag-Cu-Zn钎料对TiC-Ni金属陶瓷进行润湿. 结果表明,真空条件下,以22.5 ℃/min的速率加热至810 ℃,保温10 min,Ag-Cu-Zn/TiC-Ni金属陶瓷三相线附近界面生成了连续的(Cu, Ni)组织. 钎料在TiC-Ni金属陶瓷表面润湿过程先后经历孕育阶段、铺展阶段、钉扎阶段、回撤阶段和平衡阶段,最终平衡润湿角为27.3°. 随着加热速率由10 ℃/min上升到30 ℃/min,Zn挥发速率加快,钎料铺展过程持续时间变短,三相线附近界面(Cu, Ni)组织数量减小,由连续的层状组织转变为断续的块状组织,且钎料在金属陶瓷表面平衡润湿角不断增大. 相比真空环境,氩气环境下,Zn挥发速率降低,虽然钎料能大量溶解TiC-Ni金属陶瓷中的Ni基体,但是三相线附近界面仅有少量(Cu, Ni)形成,使其在金属陶瓷表面的润湿基底直径随时间逐渐增大,而润湿角逐渐减小,随后润湿基底直径几乎保持不变,而润湿角缓慢升高.
    Abstract: Wetting of Ag-Cu-Zn brazing alloy on TiC-Ni cermet was performed. The results show that continuous (Cu, Ni) layer forms at the interface of Ag-Cu-Zn/TiC-Ni cermet at 810 ℃for 10 min with a heating rate of 22.5 ℃/min in vacuum. The whole wetting process contains an incubation stage, a spreading stage, a pinning stage, a receding stage, and an equilibrium stage. The equilibrium contact angel is 27.3°. With the increase of heating rate from 10 ℃/min to 30 ℃/min, the evaporation velocity of Zn strengthens; the lasting time of the spreading process shortens, and the amount of (Cu, Ni) at the interface decreases. As a result, the equilibrium contact angel of Ag-Cu-Zn on TiC-Ni cermet increases with the heating rate. The evaporation of Zn weakens in argon. Only a little (Cu, Ni) forms at the interface of Ag-Cu-Zn/TiC-Ni cermet in argon, although the Ag-Cu-Zn brazing alloy dissolves a great amount of Ni matrix. So the base diameter firstly increases and the contact angle decreases with time, then the base diameter almost remains unchanged, and the contact angle increases slightly.
  • 图  1   不同加热速率时Ag-Cu-Zn液体钎料在TiC-Ni金属陶瓷表面润湿角θ和基底直径d/d0随时间的变化

    Figure  1.   Variations in the contact angle θ and base diameter d/d0 for Ag-Cu-Zn alloys on TiC-Ni cermet surfaces with different heating rate. (a) 10 ℃/min; (b) 22.5 °C/min; (c) 25 ℃/min; (d) 30 ℃/min

    图  2   加热速率对液体钎料平衡润湿角的影响

    Figure  2.   Variations in the contact angle with heating rate for Ag-Cu-Zn/TiC-Ni cermet wetting system

    图  3   Ag-Cu-Zn液滴内部蒸气泡所受外力作用示意图

    Figure  3.   Schematic diagram of the vapor bubble in the Ag-Cu-Zn liquid alloy

    图  4   不同加热速率时Ag-Cu-Zn钎料与TiC-Ni金属陶瓷靠近三相线处界面结构

    Figure  4.   Microstructures of the TiC-Ni cermet and Ag-Cu-Zn alloy interface with different heating rates. (a) 10 ℃/min; (b) 22.5 ℃/min; (c) 25 ℃/min; (d) 30 ℃/min

    图  5   氩气环境中Ag-Cu-Zn在TiC-Ni金属陶瓷表面润湿时润湿角和润湿基底直径随时间的变化曲线

    Figure  5.   Variations in the contact angle and base diameter with time for Ag-Cu-Zn alloy on TiC-Ni cermet in Ar

    图  6   氩气环境下Ag-Cu-Zn/TiC-Ni金属陶瓷靠近三相线处界面结构

    Figure  6.   Microstructure adjacent to the triple line at the Ag-Cu-Zn/TiC-Ni cermet interface in Ar

  • [1]

    Lemboub S, Boudebane S, Gotor F J, et al. Core-rim structure formation in TiC-Ni based cermets fabricated by a combined thermal explosion/hot-pressing process[J]. International Journal of Refractory Metals and Hard Materials, 2018, 70: 84 − 92. doi: 10.1016/j.ijrmhm.2017.09.014

    [2]

    Fu Z Z, Kong J H, Gajjala S M, et al. Sintering, mechanical, and oxidation properties of TiC-Ni-Mo cermets obtained from ultra-fine TiC powders[J]. Journal of Alloys and Compounds, 2018, 751: 316 − 323. doi: 10.1016/j.jallcom.2018.04.124

    [3]

    Lei M, Li Y Y, Zhang H. Interfacial microstructure and mechanical properties of the TiC-Ni cermet/Ag-Cu-Zn/ Invar joint[J]. Vacuum, 2019(168): 108830.

    [4]

    Laansoo A, Kübarsepp J, Surženkov A, et al. Induction brazing of cermets to steel and eddy current testing of joint quality[J]. Welding in the World, 2020, 64: 563 − 571. doi: 10.1007/s40194-020-00854-x

    [5] 雷敏, 张丽霞, 李宏伟, 等. 添加Zn对AgCu钎料在TiC金属陶瓷表面润湿性的影响[J]. 焊接学报, 2012, 33(6): 19 − 22.

    Lei Min, Zhang Lixia, Li Hongwei, et al. Influence of Zn addition on wettability of AgCu brazing alloy on TiC cermet[J]. Transactions of the China Welding Institution, 2012, 33(6): 19 − 22.

    [6]

    Lei M, Feng J C, Tian X Y, et al. Reactive wetting of TiC-Ni cermet by Ag-Cu-Zn alloy during evaporation[J]. Vacuum, 2017, 138: 22 − 29. doi: 10.1016/j.vacuum.2017.01.014

    [7]

    Zaharinie T, Moshwan R, Yusof F, et al. Vacuum brazing of sapphire with inconel 600 using Cu/Ni porous composite interlayer for gas pressure sensor application[J]. Materials & Design, 2014, 54: 375 − 381.

    [8]

    Liu X, Huang X, Ma H, et al. Microstructure and properties of the joints of ZrO2 ceramic/stainless steel brazed in vacuum with AgCuTi active filler metal[J]. China Welding, 2018, 27(2): 52 − 56.

    [9]

    Xue P, Zou Y, He P, et al. Development of low silver AgCuZnSn filler metal for Cu/steel dissimilar metal joining[J]. Metals, 2019, 9(2): 198. doi: 10.3390/met9020198

    [10]

    Beura V K, Xavier V, Venkateswaran T, et al. Interdiffusion and microstructure evolution during brazing of austenitic martensitic stainless steel and aluminum-bronze with Ag-Cu-Zn based brazing filler material[J]. Journal of Alloys and Compounds, 2018, 740: 852 − 862. doi: 10.1016/j.jallcom.2018.01.043

    [11]

    Xue S, Qian Y, Hu X, et al. Behavior and influence of Pb and Biin Ag-Cu-Zn brazing alloy[J]. China Welding, 2000, 9(1): 44 − 49.

    [12] 雷敏, 张丽霞, 李宏伟, 等. Zn 元素含量对AgCuZn钎料在TiC金属陶瓷表面润湿性的影响[J]. 焊接学报, 2012, 33(7): 41 − 44.

    Lei Min, Zhang Lixia, Li Hongwei, et al. Influence of Zn content on wettability of TiC cermet by AgCuZn alloy[J]. Transactions of the China Welding Institution, 2012, 33(7): 41 − 44.

    [13]

    Lei M, Li Y L, Zhang H, et al. Microstructure evolution and wettability of AgeCueZn alloy on TiC-Ni cermet[J]. Vacuum, 2019, 159: 500 − 506. doi: 10.1016/j.vacuum.2018.11.004

    [14] 张华伟, 李言祥. 金属熔体中气泡形核的理论分析[J]. 物理学报, 2007, 56(8): 4864 − 4871. doi: 10.3321/j.issn:1000-3290.2007.08.082

    Zhang Huawei, Li Yanxiang. Study on bubble nucleation in liquid metal[J]. Acta Physica Sinica, 2007, 56(8): 4864 − 4871. doi: 10.3321/j.issn:1000-3290.2007.08.082

    [15]

    Shen P, Zhang D, Lin Q L, et al. Wetting of polycrystalline MgO by molten Mg under evaporation[J]. Materials Chemistry and Physics, 2010, 122(1): 290 − 294. doi: 10.1016/j.matchemphys.2010.02.052

    [16]

    Ahn J H, Terao N, Berghezan A. Experimental observations on wetting and infiltration fronts in metals[J]. Scripta Metallurgica, 1988, 22(6): 793 − 796. doi: 10.1016/S0036-9748(88)80051-6

图(6)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  41
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-29
  • 网络出版日期:  2021-08-16
  • 刊出日期:  2021-06-24

目录

    /

    返回文章
    返回