高级检索

中厚板TC4钛合金真空环境激光焊接特性

孟圣昊, 司昌健, 任逸群, 宫建锋, 李俐群, 陶汪

孟圣昊, 司昌健, 任逸群, 宫建锋, 李俐群, 陶汪. 中厚板TC4钛合金真空环境激光焊接特性[J]. 焊接学报, 2021, 42(8): 40-47, 74. DOI: 10.12073/j.hjxb.20201124001
引用本文: 孟圣昊, 司昌健, 任逸群, 宫建锋, 李俐群, 陶汪. 中厚板TC4钛合金真空环境激光焊接特性[J]. 焊接学报, 2021, 42(8): 40-47, 74. DOI: 10.12073/j.hjxb.20201124001
MENG Shenghao, SI Changjian, REN Yiqun, GONG Jianfeng, LI Liqun, TAO Wang. Study on laser welding characteristics of thick wall TC4 titanium alloy in vacuum environment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 40-47, 74. DOI: 10.12073/j.hjxb.20201124001
Citation: MENG Shenghao, SI Changjian, REN Yiqun, GONG Jianfeng, LI Liqun, TAO Wang. Study on laser welding characteristics of thick wall TC4 titanium alloy in vacuum environment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 40-47, 74. DOI: 10.12073/j.hjxb.20201124001

中厚板TC4钛合金真空环境激光焊接特性

基金项目: 国家自然科学基金资助项目(51675129);黑龙江省自然科学基金资助项目(GX17A001)
详细信息
    作者简介:

    孟圣昊,博士研究生;主要研究方向为激光焊接技术; Email:mengshenghao2011@163.com

  • 中图分类号: TG 456.7

Study on laser welding characteristics of thick wall TC4 titanium alloy in vacuum environment

  • 摘要: 在大气和真空环境下使用光纤激光器对TC4钛合金进行焊接,分别对不同激光功率焊接焊缝形貌和组织进行观察,并对性能进行测试分析. 结果表明,真空环境激光焊接焊缝成形更加良好,可明显提高焊缝熔深,增大焊缝深宽比,抑制焊接过程中的飞溅,极大减少焊缝中的气孔缺陷. 大气环境与真空环境焊缝组织特征差别不大,真空环境热影响区宽度明显减小. 两种环境下焊缝显微硬度均呈马鞍形分布,焊缝熔化区硬度最高的特点,大气环境焊缝平均硬度约为390 HV,高于真空环境焊缝平均显微硬度8.3%. 对焊缝进行拉伸强度测试,拉伸试件全部断裂于母材部位,试件的抗拉强度为960 ~ 980 MPa.
    Abstract: Use fiber laser to weld TC4 titanium alloy under vacuum and atmospheric environment, observe the shape and structure of the weld seam obtained by welding with different laser power in atmospheric and vacuum environment, and test the performance. The results show that laser welding of the vacuum environment is more favorable. The vacuum environment can significantly improve the weld penetration, increase the depth-to-width ratio of the weld, suppress the spatter during welding, and greatly reduce the porosity in the weld. There is little difference in the weld structure between the atmospheric environment and the vacuum environment, and the width of the heat affected zone of the vacuum environment is significantly reduced. In both environments, the microhardness of the weld is saddle-shaped and the weld has the highest hardness. The average hardness of the weld in the atmospheric environment is about 390 HV, which is higher than the average hardness of the weld in the vacuum environment of 360 HV. The tensile strength of the weld was tested The tensile test piece was completely fractured at the base material. The tensile strength of the test piece was about 960 ~ 980 MPa.
  • 焊接过程中工件受热不均匀引起焊接残余应力[1]. 铝合金热膨胀系数大,在焊接时容易形成较大的残余应力. 残余应力影响产品的承载性能和使用寿命[2-5],准确测试焊接残余应力具有重要的工程意义. 在残余应力测试方法中,X射线法因测试成本适中、设备便携、对产品无损伤等优点而得到较为广泛的应用[6-9].

    材料的均匀性假设是X射线法应力测试的基本假设之一,但是材料中晶粒的择优取向破坏了材料的均匀性,使材料呈现出微观应变不均匀的特点[10-11],进而降低X射线应力测试的精度.

    国内外学者对多晶体材料微观应变不均匀现象做了大量研究[12],Withers等人[13]指出微观应变与宏观弹性应变不同,它只在几个晶粒尺寸范围内平衡,即使卸载宏观应力,这种微观应变也依然存在. Stukowski等人[14]采用试验研究与数值计算相结合的方法证明了多晶体材料普遍存在着微观应变导致的X射线宽化现象. Wilkens[15]采用理论推演的方法证明了小角度晶界处微观应变导致X射线宽化. 现有关于铝合金X射线衍射的研究表明,当晶粒尺寸大于100 nm时,X射线衍射峰半高宽能够反应材料微观应变的大小[16-17]. 虽然以上研究揭示了微观应变对X射线衍射的影响,但关于微观应变对X射线衍射应力测试的影响及其解决办法却少有报道. 文中以6061-T6铝合金为研究对象,基于对X射线衍射峰半高宽的分析,研究在不同准直器直径及摇摆角条件下X射线衍射晶粒群的微观应变的均匀性,进而探究合理的X射线应力测试工艺参数,并对6061-T6铝合金MIG焊接接头残余应力进行测试.

    图1为等强梁尺寸及其预置应力方案图. 对3 mm厚6061-T6铝合金板用电火花加工方法按图1a所示加工2个等强梁1,2,并按图1b所示令等强梁一端固定,另一端悬挂3 kg配重块. 对1号等强梁采用单向应变片测试P点预置应力大小,对2号等强梁上P点应力采用加拿大Proto-MG40P X射线应力分析仪测试.对2号等强梁上P点采用X射线应力测试时,测试方法为同倾${\sin ^2}\psi $[18],入射X射线为Cr-Kα射线,测试晶面选取Al(311)晶面,衍射晶面的法线方向取向范围为${\sin ^2}\psi \in [0,0.6]$,并在此范围内等差值地选取30个$\psi $角进行衍射角测试,为研究不同准直器直径和摇摆角条件下X射线衍射晶粒群微观应变的均匀性,按表1设计对比试验.

    图  1  等强梁尺寸及其预置应力示意图 (mm)
    Figure  1.  Schematic diagram of equal-strength beam size and its pre-stress. (a) shape and size of equal-strength beam; (b) method of pre-stressing on equal-strength beam
    表  1  对比试验方案
    Table  1.  Comparative test plan
    组号准直器直径d/mm摇摆角$\;\beta$/(°)
    A-1 2 0
    A-2 3 0
    A-3 4 0
    B-1 4 0
    B-2 4 1
    B-3 4 2
    下载: 导出CSV 
    | 显示表格

    对2号等强梁应力测试完成后,采用电火花线切割机以P点为中心沿其四周切取8 mm × 6 mm × 3 mm试样,依次经机械磨抛和电解抛光后,采用FEI Quanta 650场发射电镜进行EBSD数据采集,并使用CHANNEL 5软件进行数据后处理.

    选取与等强梁相同批次的3 mm厚6061-T6铝合金板,采用全自动MIG焊机,以对接接头形式焊接铝合金试板,焊接电流76 A,焊接电压24 V,送丝速度3.6 mm/s,焊枪行走速度10 mm/s,气体(99.99% Ar)流量15 L/min. 焊后对焊接接头进行X射线衍射应力测试,应力测试点分布如图2所示.

    图  2  残余应力测试点分布(mm)
    Figure  2.  Distribution of the points for residual stress test (mm)

    在X射线衍射应力测试过程中,从靶材激发出的X射线通过准直器后,输出平行X射线束照射在待测材料表面,准直器直径的大小决定了被X射线照射区域的面积,进而决定了能够发生衍射的晶粒数目,对不同$\psi $角处衍射X射线的强度和半高宽(full width at half maximum,FWHM)进行统计,结果如图3所示.

    图  3  不同直径的准直器下衍射线强度及半高宽分布
    Figure  3.  Intensity and FWHM of diffraction profile under aperture with different diameters. (a) distribution of diffraction intensity; (b) distribution of FWHM

    图3表明随着准直器直径的增加,在各$\psi $角处X射线衍射强度增大,在$0< {\sin ^2}\psi < 0.3$范围内,衍射X射线的半高宽随着${\sin ^2}\psi $的增大而快速减小,而在$0.3<{\sin ^2}\psi < 0.6$范围内,衍射线半高宽随着${\sin ^2}\psi $的变化而小幅震荡,这表明随着准直器直径的增加,参与衍射的晶粒数目增加. 但是,当晶粒的择优取向较弱时,衍射晶粒群的平均微观应变依然不均匀. 而当晶粒的择优取向较强时,衍射晶粒群的平均微观应变的不均匀程度降低.

    对1号等强梁的P点采用应变片测试应力的结果为79.2 MPa. 对2号等强梁的P点采用X射线测试以后,采用公式(1)计算P点处的应力值.

    $$\sigma = \left[ { - \frac{1}{2} \cdot \frac{{\text{π}} }{{180}} \cdot {\rm{cot}}{\theta _0}\frac{E}{{\left( {1 + \varepsilon } \right)}}} \right]\frac{{\partial 2{\theta _\psi }}}{{\partial {\rm{si}}{{\rm{n}}^2}\psi }}$$ (1)

    式中:2θ0为Al(311)晶面无应力时的衍射角;2θψ为衍射晶面的法线位于ψ角处时测得的衍射角[18].Eε为其弹性模量和泊松比,取值分别为2θ0 = 139.31°,E = 69 GPa,ε = 0.35. 由于测试应力值仅与不同ψ角处测得的2θΨ相对于sin2ψ的变化率有关,与sin2ψ的具体值无关. 而在$0 < {\sin ^2}\psi < 0.3$$0.3 < {\sin ^2}\psi < 0.6$两个区间内参与X射线衍射的晶粒数目和平均微观应变的均匀性差异较大,因此分别采用这两个区间内测试得到的衍射角计算应力,结果如图4所示.

    图  4  准直器直径对应力测试结果的影响
    Figure  4.  Influence of aperture diameter on stress measurement results

    随着准直器直径的增加,X射线应力测试的精度提高. 在$0 <{\sin ^2}\psi < 0.3$范围内,由于晶体择优取向较弱,参与X射线衍射的晶粒数目较少,尽管增加准直器直径,其应力测试的精度依然较低.

    通过增加准直器直径可增加参与衍射的晶粒数目,但是若过分增加准直器直径,则测试区域内应力梯度的影响将增大,同时X射线束的发散度也增大,这些都将增加测试误差. 因此B组试验考虑在不改变准直器直径的条件下增加摇摆角. 随着摇摆角的增大,各ψ角处衍射峰半高宽的变化如图5所示.

    图  5  不同摇摆角下衍射线半高宽
    Figure  5.  FWHM of diffraction profile under different oscillation angles

    $0 < {\sin ^2}\psi < 0.3$范围内,衍射峰半高宽随着sin2ψ的增大而快速减小,并且摇摆角的增大并没有明显改变半高宽随sin2ψ的变化趋势,这表明当晶体择优取向较弱时,参与X射线衍射的晶粒数目少,增加摇摆角并不会明显改善各$\psi $角处衍射晶粒群微观应变的均匀性. 而在$0.3 < {\sin ^2}\psi < 0.6$范围内,晶体的择优取向较强,随着摇摆角的增加,各$\psi $角处衍射晶粒群的微观应变趋于均匀化.

    为分析增大摇摆角时衍射晶粒群变化的本质,对材料晶粒群亚晶之间的取向差进行统计分析,分别标记出晶粒内部大于0.5°,1°,2°的小角度晶界,结果如图6所示.

    图  6  晶界分布图
    Figure  6.  Grain boundary distribution map. (a) grain boundaries with misorientation greater than 0.5°; (b) grain boundaries with misorientation greater than 1°; (c) grain boundaries with misorientation greater than 2°

    图6中黑色线条表示的晶界为大于10°的晶界,晶粒内部白色线条分别表示大于0.5°,1°,2°的小角度晶界. 对比三幅图可知晶粒内部大部分亚晶之间的取向差值小于1°,在一个晶粒内部,不同亚晶所受的应力不均匀,而在多个晶粒尺度范围内,晶粒内部所有的亚晶所受应力的总和趋于平衡[4, 6]. 因此当入射X射线摇摆角从0°增加到1°时,参与衍射的亚晶数目明显增加,使衍射晶粒群的微观应变趋于均匀化. 而当摇摆角从1°继续增加到2°时,参与衍射的亚晶数目已不再明显增加,因此这两种条件下衍射晶粒群微观应变的均匀性差异较小.

    $0 < {\sin ^2}\psi < 0.3$$0.3 < {\sin ^2}\psi < 0.6$两个区间内,随着摇摆角的增加,应力测试结果如图7所示. 结果表明当摇摆角从0°增加到1°时,X射线应力测试精度明显提高,且在晶粒择优取向较强的取向范围内应力测试精度较高.

    图  7  摇摆角对应力测试结果的影响
    Figure  7.  Influence of oscillation angles on stress measurement results

    以上测试结果表明,增加摇摆角能够使各$\psi $角处衍射晶粒群的微观应变趋于均匀化,这有利于提高X射线法应力测试的精度.

    由以上分析,使用4 mm准直器、1°摇摆角,在$0.3 < {\sin ^2}\psi < 0.6$测试区间内对焊接接头残余应力进行测试,测试结果如图8所示.

    图  8  焊接残余应力分布
    Figure  8.  Distribution of welding residual stress. (a) distribution of σx along the x direction; (b) distribution of σy along the x direction; (c) distribution of σx along the y direction; (d) distribution of σy along the y direction

    (1) 增加准直器直径可以增加各个$\psi $角处衍射晶粒的数目,提高X射线衍射强度,但对各个$\psi $角处衍射晶粒群微观应变的均匀性影响较小,因此不能明显提高应力测试精度.

    (2) 在0° ~ 1°范围内增加摇摆角可使小角度晶界附近的亚晶都参与衍射,使各个$\psi $角处衍射晶粒群微观应变趋于均匀,应力测试精度明显提高.

    (3) 衍射晶粒群微观应变的均匀性与晶粒择优取向的强弱有关,晶粒择优取向越强,衍射晶粒群微观应变越均匀,应力测试精度越高.

  • 图  1   TC4钛合金微观组织形貌

    Figure  1.   Microstructure and morphology of TC4 titanium alloy

    图  2   大气环境下激光焊接试验

    Figure  2.   Laser welding test under atmospheric environment

    图  3   真空环境下激光焊接试验

    Figure  3.   Laser welding test under vacuum environment

    图  4   大气环境下单激光堆焊焊缝宏观形貌

    Figure  4.   Macro morphology of single laser surfacing welds in the atmospheric environment. (a) 3 kW; (b) 5 kW; (c) 7 kW; (d) 10 kW

    图  5   真空环境下单激光堆焊焊缝宏观形貌

    Figure  5.   Macro morphology of single laser surfacing welds under vacuum. (a) 5 kW; (b) 6 kW; (c) 7 kW; (d) 8 kW; (e) 9 kW; (f) 10 kW

    图  6   大气环境熔深、熔宽随激光功率的变化

    Figure  6.   Variation of melting depth and melting width of atmospheric environment with laser power

    图  7   真空环境熔深、熔宽随激光功率的变化

    Figure  7.   Variation of melting depth and melting width in vacuum environment with laser power

    图  9   真空环境下焊接焊缝宏观与微观组织图

    Figure  9.   Macro and micro organization chart of welding seam in vacuum environment. (a) macro organization; (b) HAZ organization; (c) WZ organization

    图  8   大气环境下焊接焊缝宏观与微观组织图

    Figure  8.   Macro and micro organization chart of welding seam in atmospheric environment. (a) overall organization; (b) macro organization; (c) organization of HAZ; (d) organization of WZ

    图  10   大气环境下焊接焊缝熔宽方向硬度测试

    Figure  10.   Hardness test of the weld in the width direction of the weld under the atmospheric environment

    图  11   真空环境下焊接焊缝熔宽方向硬度测试

    Figure  11.   Hardness test of the weld in the melting width direction under vacuum environment

    图  12   焊缝熔深方向硬度测试

    Figure  12.   Hardness test in the direction of weld penetration

    图  13   试件尺寸(mm)

    Figure  13.   Dimensions of the test piece

    图  14   试件断裂位置

    Figure  14.   Fracture locations of test pieces

    图  15   焊缝抗拉强度

    Figure  15.   Tensile strength of weld

    图  16   焊缝断口形貌

    Figure  16.   The micrograph of weld fracture. (a) weld fracture; (b) b zone; (c) c zone

    图  17   负压环境对流换热原理示意图

    Figure  17.   Schematic diagram of convection heat transfer in negative pressure environment

    表  1   TC4钛合金的化学成分(质量分数,%)和力学性能

    Table  1   Chemical composition and mechanical properties of TC4 titanium alloy

    化学成分力学性能
    AlVFeCNHOTi抗拉强度Rm/MPa断后伸长率A(%)
    5.5 ~ 6.83.5 ~ 4.50.300.100.050.0150.20余量89510
    下载: 导出CSV

    表  2   大气环境下单激光堆焊焊缝成形

    Table  2   Single laser surfacing welding seam formation under atmospheric environment

    激光功率
    P/kW
    焊缝成形
    3
    5
    7
    10
    下载: 导出CSV

    表  3   真空环境下单激光堆焊焊缝成形(10 Pa)

    Table  3   Single laser surfacing welding seam formation under vacuum environment (10 Pa)

    激光功率
    P/kW
    焊缝成形(正面)焊缝成形(背面)
    5未穿透
    6未穿透
    7
    8
    9
    10
    下载: 导出CSV
  • [1]

    Schneider A, Gumenyuk A, Lammers M, et al. Laser beam welding of thick titanium sheets in the field of marine technology[J]. Physics Procedia, 2014(56): 582 − 590. doi: 10.1016/j.phpro.2014.08.046

    [2] 桂珍珍. 变厚度TC4-BTi6431S钛合金激光双面焊接工艺基础研究[D]. 武汉: 华中科技大学, 2014.

    Gui Zhenzhen. Basic research on laser double-sided welding of TC4-BTi6431S titanium alloy with variable thickness[D]. Wuhan: Huazhong University of Science and Technology, 2014.

    [3] 杨东旭. TC4钛合金激光焊接接头溶质元素分布及不均匀性的研究[D]. 武汉: 华中科技大学, 2015.

    Yang Dongxu. Study on solute element distribution and heterogeneity of TC4 titanium alloy laser welded joint[D]. Wuhan: Huazhong University of Science and Technology, 2015.

    [4] 吴会强, 冯吉才, 何景山, 等. Ti-6Al-4V电子束焊接焊缝区域精细组织特征[J]. 航空材料学报, 2005, 25(3): 21 − 24. doi: 10.3969/j.issn.1005-5053.2005.03.005

    Wu Huiqiang, Feng Jicai, He Jingshan, et al. Microstructure characteristics of Ti-6Al-4V electron beam welding area[J]. Journal of Aeronautical Materials, 2005, 25(3): 21 − 24. doi: 10.3969/j.issn.1005-5053.2005.03.005

    [5] 吕世雄, 崔庆龙, 黄永宪, 等. 厚板钛合金窄间隙TIG焊接头组织与性能[J]. 焊接学报, 2012, 33(8): 81 − 84.

    Lü Shixiong, Cui Qinglong, Huang Yongxian, et al. Microstructure and properties of TIG welded joints with narrow gap in titanium alloy[J]. Transactions of the China Welding Institution, 2012, 33(8): 81 − 84.

    [6] 王翔宇, 杨璟, 芦伟, 等. TC4钛合金激光窄间隙焊接工艺与组织特征研究[J]. 航空制造技术, 2016, 518(23): 104 − 107.

    Wang Xxiangyu, Yang Jing, Lu Wei, et al. Study on laser narrow gap welding process and microstructure characteristics of TC4 titanium alloy[J]. Aeronautical Manufacturing Technology, 2016, 518(23): 104 − 107.

    [7] 李吉帅. 厚板钛及钛合金电子束焊接头组织与性能的研究[D]. 济南: 山东大学, 2017.

    Li Jishuai. Study on microstructure and properties of thick plate titanium and titanium alloy electron beam welding joints[D]. Jinan: Shan Dong University, 2017.

    [8] 陈永城, 张宇鹏, 罗子艺, 等. TC4钛合金中厚板激光焊接接头显微组织与力学性能[J]. 应用激光, 2017(5): 662 − 667.

    Chen Yongcheng, Zhang Yupeng, Luo Ziyi, et al. Microstructure and mechanical properties of TC4 titanium alloy plate welded joints[J]. Applied Laser, 2017(5): 662 − 667.

    [9] 苏轩. 中厚度钛合金激光-MIG复合焊接特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    Su Xuan, Characteristics of medium thickness of titanium plate laser-mig hybrid welding[D]. Harbin: Harbin Institute of Technology, 2014.

    [10]

    Auwal S T, Ramesh S, Yusof F, et al. A review on laser beam welding of titanium alloys[J]. International Journal of Advanced Manufacturing Technology, 2018.

    [11] 彭根琛. 铝与镍合金的真空环境激光焊接特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    Peng Genchen. Laser welding characteristics of aluminum and nickel-base alloys under vacuum environment[D]. Harbin: Harbin Institute of Technology, 2015.

    [12] 唐卓. 船用厚板高功率激光焊接工艺适应性研究[D]. 上海: 上海交通大学, 2008.

    Tang Zhuo. Research on adaptability of high power laser welding process for marine thick plate[D]. Shanghai: Shanghai Jiaotong University, 2008.

    [13]

    Miller R, DebRoy T. Energy absorption by metal mvapofm dominated plasma during carbon dioxide laser welding of steels[J]. Journal of Applied Physics, 1990, 68(5): 2045 − 2050. doi: 10.1063/1.346555

    [14] 陈彦宾. 现代激光焊接技术[M]. 北京: 科学出版社, 2005.

    Chen Yanbin, Modern laser welding technology[M]. Beijing: Science Press, 2005.

    [15]

    Shcheglov P, Gumenyuk A, Gronushkin I, et al. Vapor–plasma plume investigation during high-power fiber laser welding[J]. Laser Physics, 2013, 23(1): 1 − 10. doi: 10.1088/1054-660X/23/1/016001

  • 期刊类型引用(0)

    其他类型引用(2)

图(17)  /  表(3)
计量
  • 文章访问数:  400
  • HTML全文浏览量:  35
  • PDF下载量:  46
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-11-23
  • 网络出版日期:  2021-10-24
  • 刊出日期:  2021-08-30

目录

/

返回文章
返回