Formation mechanism analysis of the type-II boundary of dissimilar steel joint with the filler metal of ER309
-
摘要: 对填充ER309焊丝的1Cr18Ni9Ti/Q235异种钢接头二型边界形成机理进行了研究. 结果表明,二型边界是由碳钢侧不均匀混合区内Ni质量分数为5% ~ 6%的位置所形成的凝固界面向焊缝中心一侧迁移而形成的. 当部分熔合区和不均匀混合区内Ni质量分数小于5% ~ 6%的区域(N区)为熔池凝固提供δ相基底,或者部分熔合区提供γ相基底且N区提供δ相基底的情况下,碳钢侧熔合边界附近均会形成二型边界;当部分熔合区提供δ相基底且N区提供γ相基底,或者部分熔合区和N区均提供γ相基底的情况下均不会形成二型边界.Abstract: Formation mechanism of the type-II boundary of 1Cr18Ni9Ti/Q235 dissimilar steel joint with the filler metal of ER309 was studied. The results showed that the type-II boundary was formed by the migration of the solidified boundaries γ/γ from the position of the 5% ~ 6% Ni mass fraction in the unmixed zone to weld center. Under the condition that the partial fusion zone and the zone of Ni mass fraction less than 5% ~ 6%(N zone) in the unmixed zone provided the substrate of δ phase, or the partial fusion zone provided the substrate of γ phase and N zone provided the substrate of δ phase, the type-II boundary all could form near the fusion boundary of the carbon steel side. The type-II boundary could not form under the condition that the partial fusion zone provided the substrate of δ phase and N zone provided the substrate of γ phase, or the partial fusion zone and N zone provided the substrate of γ phase.
-
-
表 1 焊接参数
Table 1 Welding parameters
电弧电压U/V 焊接电流I /A 焊接速度vh/(mm·s−1) 焊丝伸出长度Ls/mm 脉冲频率 f /Hz 29.6 296 7.3 24 139 表 2 母材和焊丝成分(质量分数,%)
Table 2 Compositions of the base metal and wire
材料 C Mn Si Cr Ni Ti S P Fe Q235 ≤ 0.20 ≤ 1.40 ≤ 1.35 — — — ≤ 0.045 ≤ 0.045 余量 ER309 0.050 1.33 0.60 22.60 13.22 — 0.009 0.022 余量 1Cr18Ni9Ti ≤ 0.12 ≤ 2.00 ≤ 1.00 18.00 10.50 ≤ 0.80 ≤ 0.030 ≤ 0.035 余量 -
[1] 王瑞, 王凤会, 田华明, 等. 低碳钢与不锈钢焊接接头弯曲性能的分析[J]. 焊接学报, 2013, 34(2): 58 − 62. Wang Rui, Wang Fenghui, Tian Huaming, et al. Analysis of dissimilar steels welded joints[J]. Transactions of the China Welding Institution, 2013, 34(2): 58 − 62.
[2] 郑云蔚, 蔡志鹏, 何雨晨, 等. 异种钢窄间隙焊母材熔合比对碳迁移现象影响的研究[J]. 机械工程学报, 2016, 52(12): 74 − 80. doi: 10.3901/JME.2016.12.074 Zheng Yunwei, Cai Zhipeng, He Yuchen, et al. Study on the influence of fusion ratio on carbon migration phenomenon in the narrow gap welding of dissimilar steels[J]. Journal of Mechanical Engineering, 2016, 52(12): 74 − 80. doi: 10.3901/JME.2016.12.074
[3] Dupont J N. Microstructural evolution and high temperature failure of ferritic to austenitic dissimilar welds[J]. International Materials Reviews, 2012, 57(4): 208 − 234. doi: 10.1179/1743280412Y.0000000006
[4] Omar A A. Effect of welding parameters on hard zone formation at dissimilar metal metal welds[J]. Welding Journal, 1998, 77(2): 86 − 93.
[5] 黄本生, 黄龙鹏, 李慧. 异种金属焊接研究现状及发展趋势[J]. 材料导报, 2011, 25(12): 118 − 121. Huang Bensheng, Huang Longpeng, Li Hui. Research status and development trend of dissimilar metals welding[J]. Materials Review, 2011, 25(12): 118 − 121.
[6] Ming H L, Zhang Z M, Wang J Q, et al. Microstructural characterization of an SA508-309L/308L-316L domestic dissimilar metal welded safe-end joint[J]. Materials Characterization, 2014(97): 101 − 115.
[7] Nelson T W, Lippold J C, Mills M J. Nature and evolution of the fusion boundary in ferritic-austenitic dissimilar metal welds-part2: on-cooling transformations[J]. Welding Journal, 2000, 79(10): 267s − 277s.
[8] Sadeghian M, Shamanian M, Shafyei A. Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel[J]. Materials and Design, 2014(60): 678 − 684.
[9] Alexandrov B T, Lippold J C, Sowards J W, et al. Fusion boundary microstructure evolution associated with embrittlement of Ni-base alloy overlays applied to carbon steel[J]. Weld in the World, 2013, 57(1): 39 − 53. doi: 10.1007/s40194-012-0007-1
[10] Zheng S X, Li X L, Che J, et al. Weld formation and heating mechanism in ultra-narrow gap with constricted arc by ultra-fine granular flux[J]. China Welding, 2012, 21(1): 39 − 43.
[11] Lippold J C. Solidification behavior and cracking susceptibility of pulsed-laser welds in austenitic stainless steels[J]. Welding Journal, 1994, 73(6): 129s − 139s.
[12] Folkhard E. Welding metallurgy of stainless steels[M]. New York: Springer-Verlag, 1988.
[13] Pan Chunxu. Dissimilar steel and dissimilar metal welding[M]. Beijing: China Communication Press, 2000.