高级检索

TC4激光熔覆NiCrCoAlY热循环特性及组织性能

赵盛举, 祁文军, 黄艳华, 覃鑫

赵盛举, 祁文军, 黄艳华, 覃鑫. TC4激光熔覆NiCrCoAlY热循环特性及组织性能[J]. 焊接学报, 2020, 41(9): 89-96. DOI: 10.12073/j.hjxb.20200521001
引用本文: 赵盛举, 祁文军, 黄艳华, 覃鑫. TC4激光熔覆NiCrCoAlY热循环特性及组织性能[J]. 焊接学报, 2020, 41(9): 89-96. DOI: 10.12073/j.hjxb.20200521001
ZHAO Shengju, QI Wenjun, HUANG Yanhua, QI Xin. Research on thermal cycle characteristics and microstructure performance of TC4 laser cladding NiCrCoAlY[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 89-96. DOI: 10.12073/j.hjxb.20200521001
Citation: ZHAO Shengju, QI Wenjun, HUANG Yanhua, QI Xin. Research on thermal cycle characteristics and microstructure performance of TC4 laser cladding NiCrCoAlY[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 89-96. DOI: 10.12073/j.hjxb.20200521001

TC4激光熔覆NiCrCoAlY热循环特性及组织性能

基金项目: 自治区高校科研计划自然科学重点项目(XJEDU20201007);国家大学生创新训练计划项目(201910755067).
详细信息
    作者简介:

    赵盛举,1994年出生,硕士;主要从事激光表面强化方面的科研工作; Email:296528067@qq.com.

    通讯作者:

    祁文军,教授;Email:wenjuntsi@163.com.

  • 中图分类号: TG 174.44

Research on thermal cycle characteristics and microstructure performance of TC4 laser cladding NiCrCoAlY

  • 摘要: 对TC4钛合金激光熔覆NiCrCoAlY涂层的热过程进行数值模拟仿真,探究工艺参数对热循环特性的影响规律,并进行激光熔覆试验验证. 结果表明,当激光扫描速度相同时,激光功率越大,冷却速度越快,两者近似呈线性关系. 当激光功率相同时,随着扫描速度的增大,冷却速度先增大后减小,出现拐点,随着激光功率的增加,冷却速度拐点对应的扫描速度减小. 不同冷却速度得到的涂层组织和性能不同,冷却速度增加将细化晶粒提高涂层硬度,但过大将导致涂层产生缺陷. 最佳工艺参数为激光功率600 W,扫描速度3 mm/s,适宜冷却速度为820 ℃/s.
    Abstract: Numerical simulation of thermal process of laser cladding NiCrCoAlY coating on TC4 titanium alloy is studied in order to explore the influence of process parameters on thermal cycle characteristics, and laser cladding experiments are tested and verified. The results show that when the laser scanning speed is the same, the greater the laser power, the faster the cooling speed, and they are approximately linear. When the laser power is the same, as the scanning speed increases, the cooling speed increases first and then decreases, and the inflection point appears. As the laser power increases, the cooling speed of the inflection point decreases which corresponding to the scanning speed. The microstructure and properties of the coating obtained by different cooling rate are different. The increase of cooling rate will refine the grains and improve the hardness of the coating, but the excessive cooling rate will lead to defects of the coating. The best process parameters are laser power 600 W, scanning speed 3 mm/s, and suitable cooling speed 820 ℃/s.
  • 图  1   有限元模型网格划分

    Figure  1.   Mesh division of finite element model

    图  2   功率500 ~ 700 W下不同扫描速度温度云图分布

    Figure  2.   Temperature distribution of temperature at different scanning speeds at 500 ~ 700 W power. (a) laser power 500 W; (b) laser power 600 W; (c) laser power 700 W

    图  3   扫描速度为2 mm/s时不同功率下温度循环曲线

    Figure  3.   Temperature cycling curve at different powers at a scanning speed of 2 mm/s

    图  4   扫描速度为2 mm/s时不同功率下的冷却速度

    Figure  4.   Cooling speed under different power when scanning speed is 2 mm/s

    图  5   激光功率为600 W时不同扫描速度下温度循环曲线

    Figure  5.   Temperature cycling curve at different scanning speeds when the laser power is 600 W

    图  6   激光功率为600 W时不同扫描速度下的冷却速度

    Figure  6.   Cooling speed at different scanning speeds when the laser power is 600 W. (a) scanning speed 1 ~ 6 mm/s; (b) scanning speed 7 ~ 14 mm/s

    图  7   不同功率和扫描速度下冷却速度曲线

    Figure  7.   Cooling speed curve under different power and scanning speed. (a) scanning speed 1 ~ 6 mm/s; (b) scanning speed 7 ~ 14 mm/s

    图  8   功率为600 W时不同扫描速度下熔覆层截面图

    Figure  8.   Cross-sectional view of the cladding layer under different scanning speeds when the power is 600 W. (a) scanning speed 2 mm/s; (b) scanning speed 3 mm/s; (c) scanning speed 4 mm/s

    图  9   激光功率为600 W时不同扫描速度下显微组织形貌

    Figure  9.   Microstructure morphology at different scanning speeds when the laser power is 600 W. (a) microstructure morphology when scanning speed is 2 mm/s; (b) microstructure morphology when scanning speed is 3 mm/s; (c) microstructure morphology when scanning speed is 3 mm/s

    图  10   功率为600 W时不同扫描速度下硬度曲线

    Figure  10.   Hardness curve at different scanning speeds when the power is 600 W

    表  1   NiCrCoAlY粉末的化学成分(质量分数,%)

    Table  1   Chemical composition of NiCrCoAlY powder

    NiCrCoAlFeCYO
    69.222.33.730.50.50.30.5
    下载: 导出CSV

    表  2   合理的工艺参数范围

    Table  2   Reasonable process parameter range

    激光功率P/W扫描速度v/(mm·s−1)
    400
    5001 ~ 2
    6002 ~ 4
    7003 ~ 5
    8004 ~ 7
    9005 ~ 8
    下载: 导出CSV
  • [1]

    Diao Y, Zhang K. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders[J]. Applied Surface Science, 2015, 352: 163 − 168. doi: 10.1016/j.apsusc.2015.04.030

    [2]

    Bai L L, Li J, Chen J L, et al. Effect of the content of B4C on microstructural evolution and wear behaviors of the laser-clad coatings fabricated on Ti6Al4V[J]. Optics & Laser Technology, 2016, 76: 33 − 45.

    [3]

    Farayibi P K, Abioye T E, Clare A T. A parametric study on laser cladding of Ti-6Al-4V wire and WC/W2C powder[J]. International Journal of Advanced Manufacturing Technology, 2016(1): 1 − 10.

    [4] 房卫萍, 肖铁, 张宇鹏, 等. 超厚板TC4钛合金电子束焊接接头应力腐蚀敏感性[J]. 焊接学报, 2019, 40(12): 121 − 128.

    Fang Weiping, Xiao Tie, Zhang Yupeng, et al. Stress corrosion crack sensitivity of ultra-thick TC4 titanium alloy electron beam welding joints[J]. Transactions of the China Welding Institution, 2019, 40(12): 121 − 128.

    [5] 郭春富, 刘帛炎, 董春林, 等. TC4厚壁管全位置PAW工艺及接头性能分析[J]. 焊接学报, 2019, 40(7): 121 − 126.

    Guo Chunfu, Liu Boyan, Dong Chunlin, et al. All-position plasma arc welding process for thick TC4 tube and mechanical properties of welded joints[J]. Transactions of the China Welding Institution, 2019, 40(7): 121 − 126.

    [6] 何倩, 孙德恩, 曾宪光. TC4钛合金表面沉积CrSiN/SiN纳米多层膜在3.5%NaCl溶液中的腐蚀磨损性能[J]. 中国表面工程, 2018, 31(1): 74 − 80. doi: 10.11933/j.issn.1007-9289.20170820001

    He Qian, Sun Ende, Zeng Xianguang. Wear corrosion resistance of CrSiN/SiN nano-multilayer coatings deposited on TC4 titanium alloy in 3.5% NaCl solution[J]. China Surface Engineering, 2018, 31(1): 74 − 80. doi: 10.11933/j.issn.1007-9289.20170820001

    [7] 雷靖峰, 祁文军, 谢亚东, 等. U71Mn钢表面激光熔覆Ni60-25%WC涂层工艺参数优化的研究[J]. 表面技术, 2018, 47(3): 66 − 71.

    Lei Jingfeng, Qi Wenjun, Xie Yadong, et al. Optimization of process parameters of laser cladding Ni60-25%WC coating on U71Mn steel[J]. Surface Technology, 2018, 47(3): 66 − 71.

    [8] 郭卫, 李凯凯, 柴蓉霞, 等. 激光熔覆304不锈钢稀释效应的数值模拟与实验[J]. 激光与光电子学进展, 2019, 56(5): 161 − 169.

    Guo Wei, Li Kaikai, Chai Rongxia, et al. Numerical simulation and experimental of dilution effect in laser cladding 304 stainless steel[J]. Laser and Optoelectronics Progress, 2019, 56(5): 161 − 169.

    [9]

    Lei Yiwen, Sun Ronglu, Tang Ying, et al. Nu-merical simulation of temperature distribution and tic growth kinetics for high power laser clad TiC/NiCrB-SiC composite coatings[J]. Optics and Laser Technology, 2012, 44(4): 1141 − 1147. doi: 10.1016/j.optlastec.2011.09.030

    [10]

    Roberts I A, Wang C J, Esterlein R, et al. A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing[J]. International Journal of Machine Tools & Manufacture, 2009, 49(12–13): 916 − 923.

    [11] 王佳纬. TC4合金激光增材制造显微组织的表征与数值模拟[D]. 上海: 上海交通大学, 2016.

    Wang Jiawei. Characterization and numerical simulation on the microstructure of laser additive manufactured TC4 alloy[D]. Shanghai: Shanghai Jiao Tong University, 2016.

    [12] 张珊. 钛合金激光熔覆钴基涂层的制备及数值模拟[D]. 大连: 大连理工大学, 2015.

    Zhang Shan. Fabrication and numerical simulation of cobalt-based composite coating on titanium alloy surface by laser cladding[D]. Dalian: Dalian University of Technology, 2015.

    [13] 林翠, 杜楠. 钛合金选用与设计[M]. 北京: 化学工业出版社, 2014.

    Lin Cui, Du Nan. Titanium alloy selection and design[M]. Beijing: Chemical industry press, 2014.

    [14] 陈晶, 李少华, 颜飞雪, 等. JMatPro软件在GH3039真空扩散焊工艺研究中的应用[J]. 热加工工艺, 2018, 47(11): 232 − 235.

    Chen Jing, Li Shaohua, Yan Feixue, et al. Application of JMatPro software in research of GH3039 vacuum diffusion welding process[J]. Hot Working Technology, 2018, 47(11): 232 − 235.

    [15] 刘学林. 激光熔覆镍基复合涂层有限元模拟[D]. 南昌: 华东交通大学, 2018.

    Liu Xuelin. Finite element simulation of laser cladding nickel-base composite coatings[D]. Nanchang: East China Jiaotong University, 2018.

    [16] 夏佩云, 王春明, 胡席远, 等. 基于Labview的激光焊接多点热循环曲线测量技术研究[J]. 电焊机, 2012, 42(1): 59 − 63. doi: 10.3969/j.issn.1001-2303.2012.01.015

    Xia Peiyun, Wang Chunming, Hu Xiyuan, et al. Detection of thermal cycles of laser welding based on Labview[J]. Electric Welding Machine, 2012, 42(1): 59 − 63. doi: 10.3969/j.issn.1001-2303.2012.01.015

    [17] 赵盛举, 祁文军, 黄艳华, 等. TC4表面激光熔覆Ni60基涂层温度场热循环特性数值模拟研究[J]. 表面技术, 2020, 49(2): 301 − 308.

    Zhao Shengju, Qi Wenjun, Huang Yanhua, et al. Numerical simulation study on thermal cycle characteristics of temperature field of TC4 surface laser cladding Ni60 based coating[J]. Surface Technology, 2020, 49(2): 301 − 308.

图(10)  /  表(2)
计量
  • 文章访问数:  674
  • HTML全文浏览量:  58
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-20
  • 网络出版日期:  2020-11-06
  • 刊出日期:  2020-09-24

目录

    /

    返回文章
    返回