高级检索
樊丁, 李楠, 黄健康, 余淑荣, 袁文. 旁路耦合微束等离子弧增材制造自适应高度控制系统[J]. 焊接学报, 2019, 40(11): 1-7. DOI: 10.12073/j.hjxb.2019400279
引用本文: 樊丁, 李楠, 黄健康, 余淑荣, 袁文. 旁路耦合微束等离子弧增材制造自适应高度控制系统[J]. 焊接学报, 2019, 40(11): 1-7. DOI: 10.12073/j.hjxb.2019400279
FAN Ding, LI Nan, HUANG Jiankang, YU Shurong, YUAN Wen. Double electrode micro plasma arc additive manufacturing control system based on adaptive height adjustment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 1-7. DOI: 10.12073/j.hjxb.2019400279
Citation: FAN Ding, LI Nan, HUANG Jiankang, YU Shurong, YUAN Wen. Double electrode micro plasma arc additive manufacturing control system based on adaptive height adjustment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 1-7. DOI: 10.12073/j.hjxb.2019400279

旁路耦合微束等离子弧增材制造自适应高度控制系统

Double electrode micro plasma arc additive manufacturing control system based on adaptive height adjustment

  • 摘要: 在xPC Target实时目标环境下,采用旁路耦合微束等离子弧进行增材堆垛试验,探究最大临界送丝速度、焊炬悬空高度和总电压等过程参数之间的关系.通过数据分析得到了送丝速度与总电压的回归模型,进一步在xPC Target系统中创建变送丝和电压反馈相结合的自适应高度调节控制模型,搭建了基于自适应高度调节的旁路耦合微束等离子弧增材制造控制系统,进行了在台阶形基板上的堆垛成形试验和单墙体零件自适应堆垛试验.结果表明,该控制系统能提高增材制造过程的稳定性;优化堆垛高度方向上的成形路径设计;实现复杂形状基板上金属零件的堆垛成形.

     

    Abstract: Double electrode micro plasma arc welding was used to carry out the experiments for depositing the weld beads with the maximum deposition rate in xPC Target real-time environment, and the relationships between the process parameters such as the wire feed rate, the torch stand-off distance and the total voltage were investigated. With data analysis, the regression models of the wire feed rate and the total voltage were developed. Furthermore, a self-adaptive height adjustment control model combining the variable wire feed rate and voltage feedback in xPC Target system was created. Consequently, the double electrode micro plasma arc welding additive manufacturing control system based on the self-adaptive height adjustment was developed, and the experiments of depositing on the step shaped substrate and self-adaptive depositing the thin wall parts were carried out. The results show that the control system can improve the stability of the additive manufacturing process; optimize the deposition path design in the height direction; realize depositing the metal parts on the complex shape substrate.

     

/

返回文章
返回