高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异种钛合金协同送丝等离子增材制造试验

徐俊强 彭勇 周琦 王克鸿 朱军

徐俊强, 彭勇, 周琦, 王克鸿, 朱军. 异种钛合金协同送丝等离子增材制造试验[J]. 焊接学报, 2019, 40(9): 59-64. doi: 10.12073/j.hjxb.2019400236
引用本文: 徐俊强, 彭勇, 周琦, 王克鸿, 朱军. 异种钛合金协同送丝等离子增材制造试验[J]. 焊接学报, 2019, 40(9): 59-64. doi: 10.12073/j.hjxb.2019400236
XU Junqiang, PENG Yong, ZHOU Qi, WANG Kehong, ZHU Jun. Study on plasma wire and arc additive manufacturing process of titanium alloys with twin-wire feeding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 59-64. doi: 10.12073/j.hjxb.2019400236
Citation: XU Junqiang, PENG Yong, ZHOU Qi, WANG Kehong, ZHU Jun. Study on plasma wire and arc additive manufacturing process of titanium alloys with twin-wire feeding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 59-64. doi: 10.12073/j.hjxb.2019400236

异种钛合金协同送丝等离子增材制造试验

doi: 10.12073/j.hjxb.2019400236
基金项目: 国家自然科学基金资助项目(51375243,51505226)

Study on plasma wire and arc additive manufacturing process of titanium alloys with twin-wire feeding

  • 摘要: 采用双丝协同等离子增材系统实现了TC4-TA2异种钛合金的增材成形,期望制备的增材构件具有良好的沉积形貌及优异的力学性能. 采用了体视显微镜、扫描电镜、EDS、XRD、拉伸及硬度等测试方法分析其组织及性能. 结果表明,增材构件中存在两种微观组织形态,即分布在沉积层交界处的α相集束组织和分布在沉积层中心的α + β相片层组织. 构件在竖直和水平方向上的抗拉强度分别为998和1 037 MPa,断后伸长率为9.2%和5.7%,断裂呈现为脆性解理断裂. 试验结果证明,等离子增材制造技术能够实现异种钛合金协同增材成形.
  • [1] 苗玉刚,曾阳,王腾,等.基于BC-MIG焊的铝/钢异种金属增材制造工艺[J].焊接学报, 2015, 36(7):5-8 Miao Yugang, Zeng Yang, Wang Teng, et al. Additive manufacturing process of aluminum/steel dissimilar metal based on BC-MIG welding[J]. Transactions of the China Welding Institution, 2015, 36(7):5-8
    [2] 尹博,赵鸿,王金彪,等.钛合金电弧增材制造技术研究现状及发展趋势[J].航空精密制造技术, 2016, 52(4):1-3 Yin Bo, Zhao Hong, Wang Jinbiao, et al. Research status and prospect of wire and arc additive manufactured titanium alloy[J]. Aviation Precision Manufacturing Technology, 2016, 52(4):1-3
    [3] Martina F, Colegrove P A, Williams S W, et al. Microstructure of interpass rolled wire+arc additive manufacturing Ti-6Al-4V components[J]. Metallurgical&Materials Transactions A, 2015, 46(12):6103-6118.
    [4] 张纪奎,陈百汇,张向.电弧增材制造钛合金界面处残余应力及其影响[J].稀有金属材料与工程, 2018, 47(3):920-926 Zhang Jikui, Chen Baihui, Zhang Xiang. Residual stress at the interface of wire+arc additive manufactured titanium alloy and its influence[J]. Rare Metal Materials and Engineering, 2018, 47(3):920-926
    [5] 杨海欧,王健,王冲,等.电弧增材制造TC4钛合金宏观晶粒演化规律[J].材料导报, 2018, 32(6):2028-2046 Yang Haiou, Wang Jian, Wang Chong, et al. Macrostructure evolution of TC4 titanium alloys fabricated by wire and arc additive manufacturing[J]. Materials Reports, 2018, 32(6):2028-2046
    [6] 何博文,冉先喆,田象军,等.激光增材制造TC11钛合金的耐蚀性研究[J].中国激光, 2016, 43(4):75-81 He Bowen, Ran Xianzhe, Tian Xiangjun, et al. Corrosion resistance research of laser additive manufactured TC11 titanium alloy[J]. Chinese Journal of Lasers, 2016, 43(4):75-81
    [7] Donoghue J, Antonysamy A A, Martina F, et al. The effectiveness of combining rolling deformation with wire-arc additive manufacture on β-grain refinement and texture modification in Ti-6Al-4V[J]. Materials Characterization, 2016, 114:103-114.
    [8] Wu B, Ding D, Pan Z, et al. Effects of heat accumulation on the arc characteristics and metal transfer behavior in wire arc additive manufacturing of Ti6Al4V[J]. Journal of Materials Processing Technology, 2017, 250:304-312.
    [9] Zang B G, Shi M X, Chen G Q, et al. Microstructure and defect of titanium alloy electron beam deep penetration welded joint[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(11):2633-2637.
    [10] He B, Wu W, Zhang L, et al. Microstructural characteristic and mechanical property of Ti6Al4V alloy fabricated by selective laser melting[J]. Vacuum, 2018, 150:79-83.
    [11] Guo W, Sun R, Song B, et al. Laser shock peening of laser additive manufactured Ti6Al4V titanium alloy[J]. Surface&Coatings Technology, 2018, 349:503-510.
    [12] Casalino G, Mortello M, Campanelli S L. Ytterbium fiber laser welding of Ti6Al4V alloy[J]. Journal of Manufacturing Processes, 2015, 20:250-256.
    [13] Tian Y, Gora W S, Cabo A P, et al. Material interactions in laser polishing powder bed additive manufactured Ti6Al4V components[J]. Additive Manufacturing, 2018, 20:11-22.
    [14] Demulsant X, Mendez J. Microstructural effects on small fatigue crack initiation and growth in Ti6Al4V alloys[J]. Fatigue&Fracture of Engineering Materials&Structures, 2010, 18(12):1483-1497.
    [15] 刘汉青,何超,黄志勇,等. TC17合金超高周疲劳裂纹萌生机理[J].金属学报, 2017, 53(9):1047-1054 Liu Hanqing, He Chao, Huang Zhiyong, et al. Very high cycle fatigue failure mechanism of TC17 alloy[J]. Acta Metallurgica sinica, 2017, 53(9):1047-1054
  • 加载中
计量
  • 文章访问数:  473
  • HTML全文浏览量:  2
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-24

异种钛合金协同送丝等离子增材制造试验

doi: 10.12073/j.hjxb.2019400236
    基金项目:  国家自然科学基金资助项目(51375243,51505226)

摘要: 采用双丝协同等离子增材系统实现了TC4-TA2异种钛合金的增材成形,期望制备的增材构件具有良好的沉积形貌及优异的力学性能. 采用了体视显微镜、扫描电镜、EDS、XRD、拉伸及硬度等测试方法分析其组织及性能. 结果表明,增材构件中存在两种微观组织形态,即分布在沉积层交界处的α相集束组织和分布在沉积层中心的α + β相片层组织. 构件在竖直和水平方向上的抗拉强度分别为998和1 037 MPa,断后伸长率为9.2%和5.7%,断裂呈现为脆性解理断裂. 试验结果证明,等离子增材制造技术能够实现异种钛合金协同增材成形.

English Abstract

徐俊强, 彭勇, 周琦, 王克鸿, 朱军. 异种钛合金协同送丝等离子增材制造试验[J]. 焊接学报, 2019, 40(9): 59-64. doi: 10.12073/j.hjxb.2019400236
引用本文: 徐俊强, 彭勇, 周琦, 王克鸿, 朱军. 异种钛合金协同送丝等离子增材制造试验[J]. 焊接学报, 2019, 40(9): 59-64. doi: 10.12073/j.hjxb.2019400236
XU Junqiang, PENG Yong, ZHOU Qi, WANG Kehong, ZHU Jun. Study on plasma wire and arc additive manufacturing process of titanium alloys with twin-wire feeding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 59-64. doi: 10.12073/j.hjxb.2019400236
Citation: XU Junqiang, PENG Yong, ZHOU Qi, WANG Kehong, ZHU Jun. Study on plasma wire and arc additive manufacturing process of titanium alloys with twin-wire feeding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 59-64. doi: 10.12073/j.hjxb.2019400236
参考文献 (15)

目录

    /

    返回文章
    返回