高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异种钛合金协同送丝等离子增材制造试验

徐俊强 彭勇 周琦 王克鸿 朱军

徐俊强, 彭勇, 周琦, 王克鸿, 朱军. 异种钛合金协同送丝等离子增材制造试验[J]. 焊接学报, 2019, 40(9): 59-64. doi: 10.12073/j.hjxb.2019400236
引用本文: 徐俊强, 彭勇, 周琦, 王克鸿, 朱军. 异种钛合金协同送丝等离子增材制造试验[J]. 焊接学报, 2019, 40(9): 59-64. doi: 10.12073/j.hjxb.2019400236
XU Junqiang, PENG Yong, ZHOU Qi, WANG Kehong, ZHU Jun. Study on plasma wire and arc additive manufacturing process of titanium alloys with twin-wire feeding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 59-64. doi: 10.12073/j.hjxb.2019400236
Citation: XU Junqiang, PENG Yong, ZHOU Qi, WANG Kehong, ZHU Jun. Study on plasma wire and arc additive manufacturing process of titanium alloys with twin-wire feeding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 59-64. doi: 10.12073/j.hjxb.2019400236

异种钛合金协同送丝等离子增材制造试验

doi: 10.12073/j.hjxb.2019400236
基金项目: 国家自然科学基金资助项目(51375243,51505226)

Study on plasma wire and arc additive manufacturing process of titanium alloys with twin-wire feeding

  • 摘要: 采用双丝协同等离子增材系统实现了TC4-TA2异种钛合金的增材成形,期望制备的增材构件具有良好的沉积形貌及优异的力学性能. 采用了体视显微镜、扫描电镜、EDS、XRD、拉伸及硬度等测试方法分析其组织及性能. 结果表明,增材构件中存在两种微观组织形态,即分布在沉积层交界处的α相集束组织和分布在沉积层中心的α + β相片层组织. 构件在竖直和水平方向上的抗拉强度分别为998和1 037 MPa,断后伸长率为9.2%和5.7%,断裂呈现为脆性解理断裂. 试验结果证明,等离子增材制造技术能够实现异种钛合金协同增材成形.
  • [1] 苗玉刚,曾阳,王腾,等.基于BC-MIG焊的铝/钢异种金属增材制造工艺[J].焊接学报, 2015, 36(7):5-8 Miao Yugang, Zeng Yang, Wang Teng, et al. Additive manufacturing process of aluminum/steel dissimilar metal based on BC-MIG welding[J]. Transactions of the China Welding Institution, 2015, 36(7):5-8
    [2] 尹博,赵鸿,王金彪,等.钛合金电弧增材制造技术研究现状及发展趋势[J].航空精密制造技术, 2016, 52(4):1-3 Yin Bo, Zhao Hong, Wang Jinbiao, et al. Research status and prospect of wire and arc additive manufactured titanium alloy[J]. Aviation Precision Manufacturing Technology, 2016, 52(4):1-3
    [3] Martina F, Colegrove P A, Williams S W, et al. Microstructure of interpass rolled wire+arc additive manufacturing Ti-6Al-4V components[J]. Metallurgical&Materials Transactions A, 2015, 46(12):6103-6118.
    [4] 张纪奎,陈百汇,张向.电弧增材制造钛合金界面处残余应力及其影响[J].稀有金属材料与工程, 2018, 47(3):920-926 Zhang Jikui, Chen Baihui, Zhang Xiang. Residual stress at the interface of wire+arc additive manufactured titanium alloy and its influence[J]. Rare Metal Materials and Engineering, 2018, 47(3):920-926
    [5] 杨海欧,王健,王冲,等.电弧增材制造TC4钛合金宏观晶粒演化规律[J].材料导报, 2018, 32(6):2028-2046 Yang Haiou, Wang Jian, Wang Chong, et al. Macrostructure evolution of TC4 titanium alloys fabricated by wire and arc additive manufacturing[J]. Materials Reports, 2018, 32(6):2028-2046
    [6] 何博文,冉先喆,田象军,等.激光增材制造TC11钛合金的耐蚀性研究[J].中国激光, 2016, 43(4):75-81 He Bowen, Ran Xianzhe, Tian Xiangjun, et al. Corrosion resistance research of laser additive manufactured TC11 titanium alloy[J]. Chinese Journal of Lasers, 2016, 43(4):75-81
    [7] Donoghue J, Antonysamy A A, Martina F, et al. The effectiveness of combining rolling deformation with wire-arc additive manufacture on β-grain refinement and texture modification in Ti-6Al-4V[J]. Materials Characterization, 2016, 114:103-114.
    [8] Wu B, Ding D, Pan Z, et al. Effects of heat accumulation on the arc characteristics and metal transfer behavior in wire arc additive manufacturing of Ti6Al4V[J]. Journal of Materials Processing Technology, 2017, 250:304-312.
    [9] Zang B G, Shi M X, Chen G Q, et al. Microstructure and defect of titanium alloy electron beam deep penetration welded joint[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(11):2633-2637.
    [10] He B, Wu W, Zhang L, et al. Microstructural characteristic and mechanical property of Ti6Al4V alloy fabricated by selective laser melting[J]. Vacuum, 2018, 150:79-83.
    [11] Guo W, Sun R, Song B, et al. Laser shock peening of laser additive manufactured Ti6Al4V titanium alloy[J]. Surface&Coatings Technology, 2018, 349:503-510.
    [12] Casalino G, Mortello M, Campanelli S L. Ytterbium fiber laser welding of Ti6Al4V alloy[J]. Journal of Manufacturing Processes, 2015, 20:250-256.
    [13] Tian Y, Gora W S, Cabo A P, et al. Material interactions in laser polishing powder bed additive manufactured Ti6Al4V components[J]. Additive Manufacturing, 2018, 20:11-22.
    [14] Demulsant X, Mendez J. Microstructural effects on small fatigue crack initiation and growth in Ti6Al4V alloys[J]. Fatigue&Fracture of Engineering Materials&Structures, 2010, 18(12):1483-1497.
    [15] 刘汉青,何超,黄志勇,等. TC17合金超高周疲劳裂纹萌生机理[J].金属学报, 2017, 53(9):1047-1054 Liu Hanqing, He Chao, Huang Zhiyong, et al. Very high cycle fatigue failure mechanism of TC17 alloy[J]. Acta Metallurgica sinica, 2017, 53(9):1047-1054
  • [1] 王帅, 付立铭, 袁勇, 尹宏飞, 徐济进, 谷月峰.  NiFe基合金激光增材制造热裂纹形成机理及调控 . 焊接学报, 2022, 43(5): 8-13. doi: 10.12073/j.hjxb.20220101001
    [2] 苗玉刚, 李春旺, 邵丹丹, 赵羽扬, 魏超, 张本顺.  碳钢旁路热丝PAW增材制造成形及组织和性能调控 . 焊接学报, 2022, 43(4): 55-60. doi: 10.12073/j.hjxb.20220109001
    [3] 冯曰海, 汤荣华, 刘思余, 陈琪.  308L不锈钢热丝等离子弧增材构件组织和性能 . 焊接学报, 2021, 42(5): 77-83. doi: 10.12073/j.hjxb.20200512001
    [4] 郭顺, 王鹏翔, 周琦, 朱军, 顾介仁.  等离子弧增材制造双金属交织结构微观组织及力学性能 . 焊接学报, 2021, 42(3): 14-19. doi: 10.12073/j.hjxb.20201125004
    [5] 陈晓晖, 张述泉, 冉先喆, 黄正.  电弧功率对MIG电弧增材制造316L奥氏体不锈钢组织及力学性能的影响 . 焊接学报, 2020, 41(5): 42-49. doi: 10.12073/j.hjxb.20190818001
    [6] 张兆栋, 曾庆文, 刘黎明, 孙承帅.  铝合金激光诱导MIG电弧增材制造成形尺寸规律 . 焊接学报, 2019, 40(8): 7-12. doi: 10.12073/j.hjxb.2019400201
    [7] 苗玉刚, 李春旺, 尹晨豪, 魏超.  船用铝/钢焊接接头BC-MIG电弧增材制造工艺 . 焊接学报, 2019, 40(12): 129-132. doi: 10.12073/j.hjxb.2019400325
    [8] 田银宝, 申俊琦, 胡绳荪, 李桓, 勾健.  钛/铝异种金属冷金属过渡增材制造 . 焊接学报, 2019, 40(8): 13-17. doi: 10.12073/j.hjxb.2019400202
    [9] 占彬, 冯曰海, 何杰, 刘思余.  碳钢双丝与单丝等离子弧增材制造成形及组织特征分析 . 焊接学报, 2019, 40(6): 77-81. doi: 10.12073/j.hjxb.2019400158
    [10] 苗玉刚, 李春旺, 赵慧慧, 邹俊攀, 张鹏.  铜/钢复合接头旁路热丝等离子弧增材特性分析 . 焊接学报, 2019, 40(5): 95-99. doi: 10.12073/j.hjxb.2019400134
    [11] 贾志宏, 万晓慧, 郭德伦.  超高频电弧增材制造GH4169合金热处理组织 . 焊接学报, 2019, 40(12): 154-160. doi: 10.12073/j.hjxb.2019400330
    [12] 勾健, 王志江, 胡绳荪, 田银宝.  CMT+P过程及后热处理对TC4钛合金增材构件组织和性能影响 . 焊接学报, 2019, 40(12): 31-35,46. doi: 10.12073/j.hjxb.2019400308
    [13] 何杰, 冯曰海, 张林, 占彬.  高强Al-Mg合金钨极氩弧双丝增材制造工艺与组织性能 . 焊接学报, 2019, 40(7): 109-113. doi: 10.12073/j.hjxb.2019400191
    [14] 孙承帅,张兆栋,刘黎明.  激光功率对5356铝合金激光诱导MIG电弧增材制造组织性能的影响 . 焊接学报, 2018, 39(9): 13-18. doi: 10.12073/j.hjxb.2018390216
    [15] 冯英超1,刘金平1,2,王世杰1,孙清洁2.  固溶处理对Inconel 625合金电弧增材组织的影响 . 焊接学报, 2018, 39(6): -. doi: 10.12073/j.hjxb.2018390154
    [16] 苗玉刚1,李春旺1,张鹏2,封小松3,赵慧慧3.  不锈钢旁路热丝等离子弧增材制造接头特性分析 . 焊接学报, 2018, 39(6): -. doi: 10.12073/j.hjxb.2018390144
    [17] 柏久阳, 王计辉, 林三宝, 杨春利.  铝合金电弧增材制造焊道宽度尺寸预测 . 焊接学报, 2015, 36(9): 87-90.
    [18] 苗玉刚, 曾阳, 王腾, 吴斌涛, 封小松.  基于BC-MIG焊的铝/钢异种金属增材制造工艺 . 焊接学报, 2015, 36(7): 5-8.
    [19] 郎波, 张田仓, 陶军, 郭德伦.  异质钛合金线性摩擦焊接头微观组织 . 焊接学报, 2012, (7): 105-108,112.
    [20] 王生希, 宋刚, 刘黎明.  镁合金交流TIG和脉冲TIG组织性能分析 . 焊接学报, 2006, (9): 63-66.
  • 加载中
计量
  • 文章访问数:  305
  • HTML全文浏览量:  0
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-24

异种钛合金协同送丝等离子增材制造试验

doi: 10.12073/j.hjxb.2019400236
    基金项目:  国家自然科学基金资助项目(51375243,51505226)

摘要: 采用双丝协同等离子增材系统实现了TC4-TA2异种钛合金的增材成形,期望制备的增材构件具有良好的沉积形貌及优异的力学性能. 采用了体视显微镜、扫描电镜、EDS、XRD、拉伸及硬度等测试方法分析其组织及性能. 结果表明,增材构件中存在两种微观组织形态,即分布在沉积层交界处的α相集束组织和分布在沉积层中心的α + β相片层组织. 构件在竖直和水平方向上的抗拉强度分别为998和1 037 MPa,断后伸长率为9.2%和5.7%,断裂呈现为脆性解理断裂. 试验结果证明,等离子增材制造技术能够实现异种钛合金协同增材成形.

English Abstract

徐俊强, 彭勇, 周琦, 王克鸿, 朱军. 异种钛合金协同送丝等离子增材制造试验[J]. 焊接学报, 2019, 40(9): 59-64. doi: 10.12073/j.hjxb.2019400236
引用本文: 徐俊强, 彭勇, 周琦, 王克鸿, 朱军. 异种钛合金协同送丝等离子增材制造试验[J]. 焊接学报, 2019, 40(9): 59-64. doi: 10.12073/j.hjxb.2019400236
XU Junqiang, PENG Yong, ZHOU Qi, WANG Kehong, ZHU Jun. Study on plasma wire and arc additive manufacturing process of titanium alloys with twin-wire feeding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 59-64. doi: 10.12073/j.hjxb.2019400236
Citation: XU Junqiang, PENG Yong, ZHOU Qi, WANG Kehong, ZHU Jun. Study on plasma wire and arc additive manufacturing process of titanium alloys with twin-wire feeding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 59-64. doi: 10.12073/j.hjxb.2019400236
参考文献 (15)

目录

    /

    返回文章
    返回