高级检索
余淑荣, 程能弟, 黄健康, 于晓全, 樊丁. 旁路耦合电弧增材制造热过程与组织关系[J]. 焊接学报, 2019, 40(8): 1-6. DOI: 10.12073/j.hjxb.2019400200
引用本文: 余淑荣, 程能弟, 黄健康, 于晓全, 樊丁. 旁路耦合电弧增材制造热过程与组织关系[J]. 焊接学报, 2019, 40(8): 1-6. DOI: 10.12073/j.hjxb.2019400200
YU Shurong, CHENG Nengdi, HUANG Jiankang, YU Xiaoquan, FAN Ding. Relationship between thermal process and microstructure during additive manufacturing of double-electrode gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 1-6. DOI: 10.12073/j.hjxb.2019400200
Citation: YU Shurong, CHENG Nengdi, HUANG Jiankang, YU Xiaoquan, FAN Ding. Relationship between thermal process and microstructure during additive manufacturing of double-electrode gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 1-6. DOI: 10.12073/j.hjxb.2019400200

旁路耦合电弧增材制造热过程与组织关系

Relationship between thermal process and microstructure during additive manufacturing of double-electrode gas metal arc welding

  • 摘要: 利用旁路耦合微束等离子弧焊,进行了ER304L不锈钢电弧增材制造的研究.通过进行组织观察和显微硬度测试,并结合增材过程中所测得的热循环曲线,分析了不同旁路电流、堆垛顺序对304不锈钢堆垛样组织和性能的影响.结果表明,旁路耦合微束等离子弧焊增材制造过程中,当旁路电流增大时,堆垛样组织的枝晶间距先减小后增大;堆垛顺序对组织的影响表现为,散热方向的不同导致了枝晶生长方向发生改变.试样的显微硬度沿着堆积高度方向缓慢降低,且随着旁路电流增大,硬度先增大后降低;同时堆垛顺序对硬度的影响并不明显.

     

    Abstract: Wire arc additive manufacture of ER304L stainless steel was studied using double electrode micro-plasma arc welding. The effect of different bypass current and stacking sequence on the microstructure and properties of 304 stainless steel stacking samples were analyzed by microstructure observation and microhardness test. Combining with the thermal cycle curve measured in the process of additive manufacturing. The results show that when the bypass current is increased, the dendrite arm spacing of the stacking sample decreased firstly and then increased during additive manufacturing of double electrode micro-plasma arc welding. Meanwhile, the effect of stacking sequence on microstructure was that the different direction of heat dissipation leaded to the change of dendrite growth direction. The microhardness decreased slowly along the direction of stack height. And with the increase of the bypass current, the hardness increases firstly and then decreases. The stacking order had no obvious effect on the hardness.

     

/

返回文章
返回