[1]
|
Wu Guangfeng, Liu Hong, Ma Zhifei. Study on raising impact toughness of welded joint of P91 heat resistant steel[J]. Hot Working Technology, 2007, 36(11): 30 − 32 |
[2]
|
Zhou X, Liu C, Yu L, et al. Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: a review[J]. Journal of Materials Science & Technology, 2015, 31(3): 235 − 42. |
[3]
|
Klueh R L. Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors[J]. International Materials Reviews, 2013, 50(5): 287 − 310. |
[4]
|
Zhang Jing, Han Wentuo, Chang Yongqin, et al. Microstructure and mechanical properties in friction stir welded nanostructured oxide dispersion strengthened steel joint[J]. Transactions of the China Welding Institution, 2015, 36(10): 9 − 11 |
[5]
|
Murty K L, Charit I. Structural materials for Gen-IV nuclear reactors: challenges and opportunities[J]. Journal of Nuclear Materials, 2008, 383(1): 189 − 195. |
[6]
|
Masuyama F. Creep degradation in welds of Mod. 9Cr-1Mo steel[J]. International Journal of Pressure Vessels and Piping, 2006, 83(11): 819 − 825. |
[7]
|
伍光凤, 刘 洪, 马志飞. 提高P91耐热钢焊接接头冲击韧度的研究[J]. 热加工工艺, 2007, 36(11): 30 − 32 |
[8]
|
Mishra R S, Ma Z Y. Friction stir welding and processing[J]. Materials Science and Engineering: R: Reports, 2005, 50(1): 1 − 78. |
[9]
|
Han W T, Wan F R, Leng B, et al. Grain characteristic and texture evolution in friction stir welds of nanostructured oxide dispersion strengthened ferritic steel[J]. Science and Technology of Welding and Joining, 2011, 16(8): 690 − 696. |
[10]
|
张 静, 韩文妥, 常永勤, 等. ODS钢搅拌摩擦焊接头的微观组织及其高温力学性能[J]. 焊接学报, 2015, 36(10): 9 − 11 |
[11]
|
Du D, Fu R, Li Y, et al. Gradient characteristics and strength matching in friction stir welded joints of Fe-18Cr-16Mn-2Mo-0.85N austenitic stainless stee[J]. Materials Science and Engineering: A, 2016, 616: 246 − 251. |
[12]
|
Wang D, Ni D R, Xiao B L, et al. Microstructural evolution and mechanical properties of friction stir welded joint of Fe-Cr-Mn-Mo-N austenite stainless steel[J]. Materials & Design, 2014, 64: 355 − 359. |
[13]
|
Xie G M, Cui H B, Luo Z A, et al. Asymmetric distribution of microstructure and impact toughness in stir zone during friction stir processed a high strength pipeline steel[J]. Materials Science and Engineering: A, 2017, 704: 401 − 411. |
[14]
|
Yano Y, Sato Y S, Sekio Y, et al. Mechanical properties of friction stir welded 11Cr-ferritic/martensitic steel[J]. Journal of Nuclear Materials, 2013, 442(1): S524 − S528. |
[15]
|
Manugula V L, Rajulapati K V, Reddy G M, et al. A critical assessment of the microstructure and mechanical properties of friction stir welded reduced activation ferritic-martensitic steel[J]. Materials & Design, 2016, 92: 200 − 212. |
[16]
|
Noh S, Ando M, Tanigawa H, et al. Friction stir welding of F82H steel for fusion applications[J]. Journal of Nuclear Materials, 2016, 478: 1 − 6. |
[17]
|
Arbegast W J. Modeling friction stir joining as a metal working process[C]//San Diego, USA: Hot Deformation of Aluminum Alloys Ⅲ, 2003: 313–317. |