高级检索
贾重雪, 赵运强, 董春林, 王春桂, 陈和兴. 2205双相不锈钢搅拌摩擦焊接头组织和性能[J]. 焊接学报, 2019, 40(3): 97-101. DOI: 10.12073/j.hjxb.2019400079
引用本文: 贾重雪, 赵运强, 董春林, 王春桂, 陈和兴. 2205双相不锈钢搅拌摩擦焊接头组织和性能[J]. 焊接学报, 2019, 40(3): 97-101. DOI: 10.12073/j.hjxb.2019400079
JIA Zhongxue, ZHAO Yunqiang, DONG Chunlin, WANG Chungui, CHEN Hexing. Microstructure and mechanical properties of 2205 duplex stainless steel friction stir welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 97-101. DOI: 10.12073/j.hjxb.2019400079
Citation: JIA Zhongxue, ZHAO Yunqiang, DONG Chunlin, WANG Chungui, CHEN Hexing. Microstructure and mechanical properties of 2205 duplex stainless steel friction stir welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 97-101. DOI: 10.12073/j.hjxb.2019400079

2205双相不锈钢搅拌摩擦焊接头组织和性能

Microstructure and mechanical properties of 2205 duplex stainless steel friction stir welding joint

  • 摘要: 采用不同搅拌头转速,研究了搅拌头转速对4 mm厚2205双相不锈钢板材搅拌摩擦焊接头组织及性能的影响. 结果表明,当焊接速度为50 mm/min时,搅拌头转速在600 ~ 800 r/min的范围内,均可获得表面成形良好且内部无缺陷的接头.接头搅拌区在动态再结晶的作用下组织得到细化,硬度值较高,热影响区在焊接热作用下组织粗化,硬度值较低.整个接头的铁素体含量在50% ~ 60%范围内,且随着转速的升高搅拌区的铁素体含量有所增加. 当转速为600 r/min时,接头的抗拉强度达到最大824 MPa,为母材的97.3%,断裂位置为接头的热影响区.

     

    Abstract: The effects of the welding tool rotation speed on the microstructures and mechanical properties of friction stir welding joints of 4 mm thick 2205 duplex stainless steel sheet were studied. The results indicated that when the welding speed is 50 mm/min and the rotation speed is in the range of 600 ~ 800 r/min, the sound welds can be obtained. The grains in the stir zone of the joint were refined by the dynamic recry stallization, and the hardness value in this zone was relatively high. The grains in the heat affected zone were coarsened by the welding heat and the hardness value in this zone was relatively low. The ferrite content of the obtained joints was within the range of 50% − 60%, and the ferrite content in the stir zone was increased with the increase of rotation speed. When the rotational speed was 600 r/min, the tensile strength of the joint reached the maximum 824 MPa, which was 97.3% of the base material, and the fracture location was in the heat affected zone.

     

/

返回文章
返回