高级检索

SnAgCu-xTi在单晶硅表面的润湿行为

隋然, 林巧力

隋然, 林巧力. SnAgCu-xTi在单晶硅表面的润湿行为[J]. 焊接学报, 2020, 41(4): 90-96. DOI: 10.12073/j.hjxb.20191122001
引用本文: 隋然, 林巧力. SnAgCu-xTi在单晶硅表面的润湿行为[J]. 焊接学报, 2020, 41(4): 90-96. DOI: 10.12073/j.hjxb.20191122001
SUI Ran, LIN Qiaoli. Wetting behavior of monocrystalline Si by SnAgCu-xTi alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 90-96. DOI: 10.12073/j.hjxb.20191122001
Citation: SUI Ran, LIN Qiaoli. Wetting behavior of monocrystalline Si by SnAgCu-xTi alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 90-96. DOI: 10.12073/j.hjxb.20191122001

SnAgCu-xTi在单晶硅表面的润湿行为

基金项目: 国家自然科学基金资助项目(51665031);兰州工业学院青年科技创新项目(19K-019);兰州工业学院开物创新团队项目(18KW-05).
详细信息
    作者简介:

    隋然,1983年出生,硕士,讲师;主要从事异种金属连接方面的科研和教学工作;发表论文20余篇;Email:dandansuiran@163.com

    通讯作者:

    林巧力,教授;Email:lqllinqiaoli@163.com.

  • 中图分类号: TG 454

Wetting behavior of monocrystalline Si by SnAgCu-xTi alloys

  • 摘要: 采用改良座滴法在高真空条件下研究了熔融Sn0.3Ag0.7Cu(SAC)-xTi(x为质量分数,%)在800 ~ 900 ℃与单晶硅表面的润湿行为. 结果表明,SAC-xTi/Si体系属于惰性润湿体系,钛的添加显著改善了润湿性. 在不添加钛时,SAC钎料在800 ℃与单晶硅润湿1 800 s后达到平衡,平衡接触角为63°;SAC-1Ti钎料在900 ℃润湿1 800 s后获得最小平衡接触角41°;SAC-3Ti钎料在900 ℃时达到平衡润湿的时间最短,仅为50 s,平衡接触角为48°. 润湿机制为钛加速了单晶硅表面氧化膜的去除. 在熔融钎料的铺展过程中,通过溶解−再析出机制和微掩膜机制,在固/液界面处形成了温度依赖的“金字塔”结构,温度越高,“金字塔”结构越稀疏且形貌越大. “金字塔”结构的出现并未改善体系的润湿性,由于其对三相线的钉扎作用,进而使得体系的润湿性变差.
    Abstract: The wetting behavior of molten Sn0.3Ag0.7Cu (SAC)-xTi (x=wt.%) on the surface of monocrystalline Si at 800−900 ℃ was studied under high vacuum by the modified drop method. The results show that SAC-xTi/Si system belongs to the inert wetting system, and the Ti addition improved wettability, significantly. Without Ti addition, the system achieved the equilibrium contact angle of 63° after 1 800 s at 800 °C; With 1% Ti addition, the system achieved the lowest equilibrium contact angle of 41° after 1 800 s at 900 °C; With 3% Ti addition, the system achieved the fastest spreading in 50 s at 900 °C. The wetting mechanism is that the active component Ti accelerates the removal of oxide film on the surface of monocrystalline Si. During the spreading process of the molten solder, the temperature-dependent “pyramid” microstructure was formed at the solid/liquid interface through dissolution-reprecipitation mechanism and micro-mask mechanism, i.e., the higher temperature induced the sparse and larger “pyramid” microstructures. The appearance of “pyramid” microstructures did not improve the wettability of the system, on the contrary, the wettability became worse due to the pinning of the triple line.
  • 图  1   SAC-xTi在硅基板表面上接触角及归一化半径随时间的变化

    Figure  1.   Variations of contact angle and normalized contact radius with time for SAC-xTi/Si. (a) contact angle;(b) normalized contact radius

    图  2   SAC-xTi/Si等温润湿后横截面宏观形貌

    Figure  2.   Cross-sectional structures of SAC-xTi/Si system after wetting. (a) SAC-3Ti/Si system after isothermal wetting at 800 ℃;(b) SAC-3Ti/Si system after isothermal wetting at 850 ℃;(c) SAC-3Ti/Si system after isothermal wetting at 900 ℃;(d) SAC-1Ti/Si system after isothermal wetting at 900 ℃;(e) detailed view for e position in Fig. 2d;(f) detailed view for f position in Fig. 2d

    图  3   SAC-3Ti/Si在900 ℃等温润湿后界面微观结构

    Figure  3.   Interfacial microstructures for SAC-3Ti/Si system after isothermal wetting at 900 ℃. (a) vicinity of triple line (cross-sectional view); (b) inner of interface (cross-sectional view);(c) detailed view for c position in Fig. 3b;(d) vicinity of triple line (top view);(e) inner of interface (top view);(f) detailed view for f position in Fig. 3e

    图  4   去除凝固金属后界面处的XRD

    Figure  4.   XRD pattern for the solidified metal removed interface

    图  5   等温润湿后单晶硅基板的XPS

    Figure  5.   XPS of monocrystalline Si substrate surface after isothermal wetting

    图  6   等温润湿后去除凝固金属SAC-xTi/Si界面的锥体结构

    Figure  6.   Pyramidal hillocks of the solidified metal removed interface for SAC-xTi/Si system after isothermal wetting.(a) SAC/Si after wetting at 800 ℃;(b) SAC-Ti/Si after wetting at 850 ℃;(c) SAC-3Ti/Si after wetting at 900 ℃

    图  7   1/cosθe与温度的变化关系

    Figure  7.   Relation curve between 1/cosθe and temperature variation

    表  1   图2e图2f中对应位置的EDS化学成分(摩尔分数, %)

    Table  1   Chemical compositions for the corresponding positions in Fig. 2e and Fig. 2f

    能谱标号SiTiCuAgSn
    166.5232.710.330.050.39
    20.7044.000.360.3550.59
    下载: 导出CSV
  • [1]

    Awais A, Dong H G, Xia Y Q, et al. Lap joining Al5052 to Ti6Al4V by GTAW with AlSi5 filler wire[J]. China Welding, 2019, 28(2): 15 − 23.

    [2] 朱永权, 张丽霞, 任伟, 等. 表面活化Al2O3陶瓷与5005铝合金真空钎焊[J]. 焊接学报, 2018, 39(11): 78 − 82.

    Zhu Yongquan, Zhang Lixia, Ren Wei, et al. Vacuum brazing of active metallized Al2O3 ceramic to 5005 aluminum alloy[J]. Transactions of the China Welding Institution, 2018, 39(11): 78 − 82.

    [3] 潘泽浩, 程战, 刘磊, 等. 石英玻璃飞秒激光微连接及其接头性能[J]. 焊接学报, 2016, 37(6): 5 − 8.

    Pan Zehao, Cheng Zhan, Liu Lei, et al. Microwelding of fused silica by femtosecond laser and the joint mechanical properties[J]. Transactions of the China Welding Institution, 2016, 37(6): 5 − 8.

    [4] 李文文, 熊华平, 吴欣, 等. Co-Nb-Pd-Ni-V钎料真空钎焊Cf/SiC复合材料的接头组织与性能[J]. 焊接学报, 2019, 40(9): 128 − 132.

    Li Wenwen, Xiong Huaping, Wu Xin, et al. Microstructure and strength of the Cf/SiC composite joint brazed with Co-Nb-Pd-Ni-V filler alloy[J]. Transactions of the China Welding Institution, 2019, 40(9): 128 − 132.

    [5]

    Chen S J, Tang H J, Zhao P F. A two-step transient liquid phase diffusion bonding process of T91 steels[J]. China Welding, 2017, 26(2): 52 − 57.

    [6]

    Cheng L X, Li G Y, Wang X Q, et al. Influence of active element Ti on interfacial reaction and soldering strength between Sn3.5Ag4Ti(Ce,Ga) alloy filler and Si substrate[J]. Materials Science and Engineering: A, 2016, 658: 42 − 49. doi: 10.1016/j.msea.2016.01.100

    [7]

    Tsao L C, Chang S Y, Huang M S, et al. Direct robust active bonding between Al heat sink and Si substrate[C]//International Conference on Electronic Packaging Technology & High Density Packaging. Guilin: IEEE, 2012: 1635 − 1638.

    [8]

    Yu D Q, Wu C M L, Wong Y M, et al. Direct robust bonding between Sn-based solder and Si substrate[J]. Journal of Materials Science-Materials in Electronics, 2007, 18(10): 1057 − 1063. doi: 10.1007/s10854-006-9114-3

    [9] 杨景卫, 曹彪, 柳健, 等. 压力对纯铜超声焊接界面行为的影响[J]. 焊接学报, 2018, 39(2): 53 − 56.

    Yang Jingwei, Cao Biao, Liu Jian, et al. Effect of welding pressure on interfacial behavior of ultra-sonic-welded copper joints[J]. Transactions of the China Welding Institution, 2018, 39(2): 53 − 56.

    [10]

    Eustathopoulos N, Nicholas M G, Drevet B. Wettability at high temperatures[M]. Oxford: Elsevier, 1999.

    [11]

    Murarka S P, Fraser D B. Thin film interaction between titanium and polycrystalline silicon[J]. Journal of Applied Physics, 1980, 51(1): 342 − 349. doi: 10.1063/1.327378

    [12]

    Ogawa S I, Kouzaki T, Yoshida T, et al. Interface microstructure of titanium thin-film/silicon single-crystal substrate correlated with electrical barrier heights[J]. Journal of Applied Physics, 1991, 70(2): 827 − 832. doi: 10.1063/1.349641

    [13] 闫文青, 张建强, 刘升. 氩弧熔敷Ti-Si-C系陶瓷涂层中物相的热力学预测[J]. 焊接学报, 2017, 38(5): 108 − 111.

    Yan Wenqing, Zhang Jianqiang, Liu Sheng. Thermodynamic prediction for phases of ceramic coatings in Ti-Si-C system by argon arc depositing[J]. Transactions of the China Welding Institution, 2017, 38(5): 108 − 111.

    [14]

    Gosálvez M A, Nieminen R M. Surface morphology during anisotropic wet chemical etching of crystalline silicon[J]. New Journal of Physics, 2003, 5(1): 100.1 − 100.28.

    [15]

    Khanna A, Basu P K, Filipovic A, et al. Influence of random pyramid surface texture on silver screen-printed contact formation for monocrystalline silicon wafer solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 132: 589 − 596. doi: 10.1016/j.solmat.2014.10.018

    [16]

    Koleňák R, Prach M. Research of joining brittle nonmetallic materials with an active solder[J]. Advances in Materials Science and Engineering, 2014, 2014: 1 − 9.

    [17]

    Liu X J, Niu Y C, Zhai T G, et al. Wettability investigating on the wet etching textured multicrystalline silicon wafer[J]. Applied Physics A, 2016, 122(2): 127.1 − 127.8.

  • 期刊类型引用(10)

    1. 王守明,高振坤,陈建华,丁韦,许蕊,刘国庆,谭锦红. U71Mn钢闪光-摩擦复合焊接头组织及性能研究. 金属加工(热加工). 2025(04): 67-73+78 . 百度学术
    2. 杨博,邓佳荣,刘新,吕其兵. 钢轨交流闪光焊液桥爆破演化行为. 焊接学报. 2024(02): 105-112+135 . 本站查看
    3. 赵国,李力,高振坤,丁韦,刘威. 基于连续信号自适应分解的钢轨交流闪光焊接过梁爆破定量分析. 中国铁道科学. 2023(03): 64-72 . 百度学术
    4. 张倩. 移动闪光焊接头断裂原因及预防措施. 铁道建筑. 2022(01): 54-58 . 百度学术
    5. 王莹莹,丁韦,李力,高振坤,赵国. 钢轨闪光焊灰斑缺陷及其非金属夹杂物相关性分析. 高速铁路新材料. 2022(02): 54-58 . 百度学术
    6. 王若愚,李大东,陆鑫,申永代. 地铁线路钢轨闪光焊接头轨头下颚伤损原因分析. 城市轨道交通研究. 2022(07): 125-129 . 百度学术
    7. 杨勇. 某工程钢筋混凝土过梁结构计算与设计浅析. 广东建材. 2020(08): 62-63 . 百度学术
    8. 陈献忠. 基于发电机组功率输出限制下的钢轨现场闪光焊工艺研究. 铁道建筑技术. 2020(11): 23-26+30 . 百度学术
    9. 陆鑫,李大东,王若愚,邓建. 焊接工艺对钢轨闪光焊接头性能的影响. 焊接. 2019(12): 50-55+68 . 百度学术
    10. 万成. 既有线路轨道焊接施工质量控制与管理. 铁道建筑技术. 2018(08): 109-111+115 . 百度学术

    其他类型引用(2)

图(7)  /  表(1)
计量
  • 文章访问数:  580
  • HTML全文浏览量:  60
  • PDF下载量:  25
  • 被引次数: 12
出版历程
  • 收稿日期:  2019-11-21
  • 网络出版日期:  2020-07-26
  • 刊出日期:  2020-07-26

目录

    /

    返回文章
    返回