Stress field and mechanical properties of laser metal deposited aluminum alloys
-
摘要: 采用激光熔化沉积工艺对6 mm厚的ZL114A铝板中的通槽进行了修复试验. 试验中采用AlSi10Mg粉末作为沉积过程的填充材料. 为了选择合适的激光扫描方法,通过数值模拟的方式,探究了不同扫描路径下产生的残余应力情况. 模拟结果显示,相比于自一侧向另一侧平行扫描,自下向上逐层扫描方式更有助于减小残余应力,残余应力分布也更均匀. 采用自下向上的逐层扫描方式实现了铝板通槽的激光熔化沉积的工艺试验,并探索了缺陷及热输入对试件力学性能的影响. 结果表明,通过工艺试验得到的沉积试件,最优性能的试件抗拉强度为268 MPa,达到母材的89%. 试件断裂并未沿着沉积区与母材的界面处断裂,而是在沉积区内部层与层界面间的搭接区域断裂.Abstract: Through grooves in the 6 mm thickness ZL114A aluminum plate were repaired by the laser metal deposition process, and the filling powder was AlSi10Mg powder. In order to determine the scanning strategy, the residual stress generated with different scanning strategies was calculated by numerical simulation. The process of laser melting deposition was realized by the path scanning method with the smallest residual stress, and the influence of defects and heat input on the mechanical properties of the test workpiece was further studied. The results show that the layer-by-layer scanning strategy generated less the residual stress compared with the parallel scanning strategy. In terms of mechanical properties, by optimizing the process, the tensile strength of the tensile specimens has reached 268 MPa, which is 89% of the tensile strength of the substrate. Besides, the fracture location of the specimen was not along the interface between the deposition area and the substrate, but in the overlapping area between the deposition tracks.
-
-
表 1 ZL114A与AlSi10Mg铝合金的化学成分(质量分数,%)
Table 1 Chemical composition of ZL114A and AlSi10Mg aluminium alloy
材料 Si Mg Zn Mn Fe Be Ni Al ZL114A 7.2 0.56 0.10 0.1 0.20 0.07 — 余量 AlSi10Mg 10.1 0.35 0.04 0.2 0.09 — 0.01 余量 -
[1] Chang Yunfeng, Lei Zhen, Wang Xuyou, et al. Characteristic of laser-MIG hybrid welding with filling additional cold wire for aluminum alloy[J]. China Welding, 2018, 27(3): 35 − 41.
[2] 汪汉萍, 杨晓益, 陈辉, 等. 130 mm铝合金扫描激光填丝焊接头微区组织和性能[J]. 焊接学报, 2019, 40(11): 87 − 92. doi: 10.12073/j.hjxb.2019400293 Wang Hanping, Yang Xiaoyi, Chen Hui, et al. Micro-area organization and performance of 130 mm Al alloy scanning laser filler wire welded joint[J]. Transactions of the China welding institution, 2019, 40(11): 87 − 92. doi: 10.12073/j.hjxb.2019400293
[3] Lei Zhen, Li Xiaoyu, Xu Fujia, et al. Laser-pulsed MIG hybrid welding technology of A6N01S aluminum alloy[J]. China Welding, 2017, 26(4): 10 − 19.
[4] Deutsch M G, Punkari A, Weckman D C, et al. Weldability of 1.6 mm thick aluminium alloy 5182 sheet by single and dual beam ND: YAG laser welding[J]. Science and Technology of Welding and Joining, 2003, 8(4): 246 − 256. doi: 10.1179/136217103225005499
[5] Aboulkhair N T, Maskery I, Tuck C, et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment[J]. Materials Science & Engineering A, 2016, 667: 139 − 146.
[6] Ding Y, Muniz-lerma J, Trask M, et al. Microstructure and mechanical property considerations in additive manufacturing of aluminum alloys[J]. MRS Bulletin, 2017, 41(10): 745 − 751.
[7] Chen B, Yao Y Z, Song X G, et al. Microstructure and mechanical properties of additive manufacturing AlSi10Mg alloy using direct metal deposition[J]. Ferroelectrics, 2018, 523(1): 153 − 166. doi: 10.1080/00150193.2018.1392147
[8] Javidani M, Arreguin-zavala J, Danovitch J, et al. Additive manufacturing of AlSi10Mg alloy using direct energy deposition: microstructure and hardness characterization[J]. Journal of Thermal Spray Technology, 2017, 26(4): 587 − 597. doi: 10.1007/s11666-016-0495-4
[9] 刘昊, 虞钢, 何秀丽, 等. 送粉式激光熔覆中瞬态温度场与几何形貌的三维数值模拟[J]. 中国激光, 2013, 40(12): 78 − 85. Liu Hao, Yu Gang, He Xiuli, et al. Three-dimensional numerical simulation of transient temperature field and coating geometry in powder feeding laser cladding[J]. Chinese Journal of Lasers, 2013, 40(12): 78 − 85.
[10] 董敢. 同轴送粉激光熔覆熔池数值模拟[D]. 长沙: 湖南大学, 2013. Dong Gan. Numerical simulation of molten pool in coaxial powder-feed laser cladding[D]. Changsha : Hunan University, 2013.