高级检索

高氮钢CMT电弧增材制造多道搭接表面质量评价

杨东青, 王小伟, 王奕楷, 范霁康, 王克鸿

杨东青, 王小伟, 王奕楷, 范霁康, 王克鸿. 高氮钢CMT电弧增材制造多道搭接表面质量评价[J]. 焊接学报, 2020, 41(4): 73-76, 83. DOI: 10.12073/j.hjxb.20190914002
引用本文: 杨东青, 王小伟, 王奕楷, 范霁康, 王克鸿. 高氮钢CMT电弧增材制造多道搭接表面质量评价[J]. 焊接学报, 2020, 41(4): 73-76, 83. DOI: 10.12073/j.hjxb.20190914002
YANG Dongqing, WANG Xiaowei, WANG Yikai, FAN Jikang, WANG Kehong. Surface quality evaluation of multi-bead overlapping for high nitrogen steel by CMT based additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 73-76, 83. DOI: 10.12073/j.hjxb.20190914002
Citation: YANG Dongqing, WANG Xiaowei, WANG Yikai, FAN Jikang, WANG Kehong. Surface quality evaluation of multi-bead overlapping for high nitrogen steel by CMT based additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 73-76, 83. DOI: 10.12073/j.hjxb.20190914002

高氮钢CMT电弧增材制造多道搭接表面质量评价

基金项目: 国家自然科学基金资助项目(51805266,51805265);中央高校基本科研业务费专项资金资助(30919011411).
详细信息
    作者简介:

    杨东青,1990年出生,博士,讲师;主要从事电弧增材方面的研究工作;发表论文10余篇;Email:yangdq@njust.edu.cn.

    通讯作者:

    范霁康,博士,讲师;Email:fanjk@njust.edu.cn.

  • 中图分类号: TG 441.7

Surface quality evaluation of multi-bead overlapping for high nitrogen steel by CMT based additive manufacturing

  • 摘要: 针对电弧增材制造成形问题,提出基于三维表面粗糙度参数的零件表面质量评价方法. 以高氮钢为例,采用CMT工艺进行多道搭接试验,通过三维扫描设备提取零件表面信息,计算表面轮廓均方根偏差Sq和轮廓偏斜度Ssk,对比计算所得数据与实际表面成形情况,并利用所提出的方法研究了增材制造过程中电弧摆宽对多道搭接表面质量的影响. 结果表明,此评价方法所得数据规律与实际成形情况基本吻合,具有较好的适应性和科学性. 根据数值SqSsk大小可将成形表面质量由优到差分为A,B,C,D 4个等级. 电弧增材制造的热输入和电弧摆宽对成形表面质量影响较大. 在热输入较大时,电弧摆宽为15和10 mm时,熔敷焊道余高小、宽高比大,搭接成形更好.
    Abstract: A surface quality evaluation method based on 3D surface roughness parameters was proposed for the forming problem in wire and arc additive manufacturing. Multi-bead overlapping samples of high nitrogen steel were deposited by CMT additive manufacturing, and the surface information was extracted by 3D scanning equipment to calculate the surface profile root mean square deviation Sq and profile skewness Ssk for comparing the data with the actual surface forming. The effect of swing arc on the surface quality of arc additive forming was investigated by this method. The results showed that the data obtained by this method was basically consistent with the actual situation. The evaluation method had good adaptability and scientificity. The forming surface quality can be divided into four grades: A, B, C and D from excellent to bad based on Sq and Ssk. The heat input and arc swing amplitude have great influence on the surface quality. Under the high heat input, when the swing arc amplitude is 15 and 10 mm, the overlapping forming surface with swing arc is better because of the small deposition height and high width to height ratio.
  • 图  1   增材制造表面质量评价流程

    Figure  1.   Surface evaluation procedure for additive manufacturing

    图  2   多道搭接表面宏观形貌

    Figure  2.   Macro morphology of multi-bead overlapping surface

    图  3   评价结果数据分布

    Figure  3.   Data distribution of evaluation results

    表  1   丝材与基板的化学成分(质量分数,%)

    Table  1   Chemical components of wire and substrate

    材料CSiMnCrNiMoNFe
    丝材0.030.1817.8622.702.081.190.99余量
    基板0.060.801.8018.2612.702.31余量
    下载: 导出CSV

    表  2   增材试验设计与增材制造表面评价数据

    Table  2   Test design and data of surface evaluation for additive manufacturing

    序号电弧摆宽
    D/mm
    送丝速度
    v/(m·min−1)
    搭接率
    η
    均方根偏差
    Sq/mm
    偏斜度
    Ssk
    序号电弧摆宽
    D/mm
    送丝速度
    v/(m·min−1)
    搭接率
    η
    均方根偏差
    Sq/mm
    偏斜度
    Ssk
    11560.50.096−0.94018540.60.198−0.463
    21560.60.181−0.22919560.40.138−0.650
    31560.70.3180.20820560.50.119−0.640
    41580.50.109−0.28421560.60.284−0.542
    51580.60.229−0.59922580.40.311−0.200
    61580.70.310−0.83323580.50.463−0.919
    71040.40.513−1.87024580.60.159−0.840
    81040.50.519−1.87525040.40.096−0.376
    91040.60.414−2.78626040.50.286−0.241
    101060.40.217−0.42327040.60.1640.482
    111060.50.178−0.49828060.40.296−0.513
    121060.60.145−0.56729060.50.249−0.830
    131080.40.116−0.32330060.60.350−0.149
    141080.50.089−0.44631080.40.287−0.884
    151080.60.151−0.42332080.50.398−0.755
    16540.40.1360.50333080.60.355−0.059
    17540.50.252−0.565
    下载: 导出CSV

    表  3   部分试验的等级评价(搭接率为0.5)

    Table  3   Grades of some test result(η=0.5)

    电弧摆宽D/mm送丝速度v/(m·min−1)
    468
    0BCC
    5BBD
    10DBB
    15CA
    下载: 导出CSV
  • [1]

    Cunningham C R, Flynn J M, Shokrani A, et al. Strategies and processes for high quality wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 22: 672 − 686. doi: 10.1016/j.addma.2018.06.020

    [2]

    Hoefer K, Mayr P. 3DPMD-arc-based additive manufacturing with titanium powder as raw material[J]. China Welding, 2019, 28(1): 11 − 15.

    [3]

    Sun Q J, Sang H B, Liu Y B, et al. Cross section scan trace planning based on arc additive manufacturing[J]. China Welding, 2019, 28(4): 16 − 21.

    [4] 王晓光, 刘奋成, 方平, 等. CMT电弧增材制造316L不锈钢成形精度与组织性能分析[J]. 焊接学报, 2019, 40(5): 100 − 106. doi: 10.12073/j.hjxb.2019400135

    Wang Xiaoguang, Liu Fengcheng, Fang Ping, et al. Forming accuracy and properties of wire arc additive manufacturing of 316L components using CMT process[J]. Transactions of the China Welding Institution, 2019, 40(5): 100 − 106. doi: 10.12073/j.hjxb.2019400135

    [5]

    Spencer J D, Dickens P M, Wykes C M. Rapid prototyping of metal parts by three-dimensional welding[J]. Proceedings of the Institute of Mechanical Engineers, Part B: the Journal of Engineering Manufacture, 1998, 212: 175 − 82. doi: 10.1243/0954405981515590

    [6]

    Li Y Z, Sun Y F, Han Q L, et al. Enhanced beads overlapping model for wire and arc additive manufacturing of multi-layer multi-bead metallic parts[J]. Journal of Materials Processing Technology, 2018, 252: 838 − 848. doi: 10.1016/j.jmatprotec.2017.10.017

    [7] 张金田, 王杏华, 王涛. 单道多层电弧增材制造成形控制理论分析[J]. 焊接学报, 2019, 40(12): 63 − 67.

    Zhang Jintian, Wang Xinghua, Wang Tao. Research on forming control for single-pass multi-layer of WAAM[J]. Transactions of the China Welding Institution, 2019, 40(12): 63 − 67.

    [8]

    Zhang X Y, Zhou Q, Wang K H, et al. Study on microstructure and tensile properties of high nitrogen Cr-Mn steel processed by CMT wire and arc additive manufacturing[J]. Materials and Design, 2019, 166: 1 − 15.

    [9] 何宝凤, 魏翠娥, 刘柄显, 等. 三维表面粗糙度的表征和应用[J]. 光学精密工程, 2018, 26(8): 1994 − 2011. doi: 10.3788/OPE.20182608.1994

    He Baofeng, Wei Cuie, Liu Bingxian, et al. Three-dimensional surface roughness characterization and application[J]. Optics and Precision Engineering, 2018, 26(8): 1994 − 2011. doi: 10.3788/OPE.20182608.1994

    [10] 李伯奎. 三维表面偏斜度与陡度的规律研究[J]. 计量技术, 2008, 10: 3 − 6. doi: 10.3969/j.issn.1000-0771.2008.01.001

    Li Bokui. Study on the rule of surface skewness and surface kurtosis[J]. Measurement Technique, 2008, 10: 3 − 6. doi: 10.3969/j.issn.1000-0771.2008.01.001

图(3)  /  表(3)
计量
  • 文章访问数:  597
  • HTML全文浏览量:  33
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-13
  • 网络出版日期:  2020-07-26
  • 刊出日期:  2020-07-26

目录

    /

    返回文章
    返回