Surface quality evaluation of multi-bead overlapping for high nitrogen steel by CMT based additive manufacturing
-
摘要: 针对电弧增材制造成形问题,提出基于三维表面粗糙度参数的零件表面质量评价方法. 以高氮钢为例,采用CMT工艺进行多道搭接试验,通过三维扫描设备提取零件表面信息,计算表面轮廓均方根偏差Sq和轮廓偏斜度Ssk,对比计算所得数据与实际表面成形情况,并利用所提出的方法研究了增材制造过程中电弧摆宽对多道搭接表面质量的影响. 结果表明,此评价方法所得数据规律与实际成形情况基本吻合,具有较好的适应性和科学性. 根据数值Sq和Ssk大小可将成形表面质量由优到差分为A,B,C,D 4个等级. 电弧增材制造的热输入和电弧摆宽对成形表面质量影响较大. 在热输入较大时,电弧摆宽为15和10 mm时,熔敷焊道余高小、宽高比大,搭接成形更好.Abstract: A surface quality evaluation method based on 3D surface roughness parameters was proposed for the forming problem in wire and arc additive manufacturing. Multi-bead overlapping samples of high nitrogen steel were deposited by CMT additive manufacturing, and the surface information was extracted by 3D scanning equipment to calculate the surface profile root mean square deviation Sq and profile skewness Ssk for comparing the data with the actual surface forming. The effect of swing arc on the surface quality of arc additive forming was investigated by this method. The results showed that the data obtained by this method was basically consistent with the actual situation. The evaluation method had good adaptability and scientificity. The forming surface quality can be divided into four grades: A, B, C and D from excellent to bad based on Sq and Ssk. The heat input and arc swing amplitude have great influence on the surface quality. Under the high heat input, when the swing arc amplitude is 15 and 10 mm, the overlapping forming surface with swing arc is better because of the small deposition height and high width to height ratio.
-
-
表 1 丝材与基板的化学成分(质量分数,%)
Table 1 Chemical components of wire and substrate
材料 C Si Mn Cr Ni Mo N Fe 丝材 0.03 0.18 17.86 22.70 2.08 1.19 0.99 余量 基板 0.06 0.80 1.80 18.26 12.70 2.31 — 余量 表 2 增材试验设计与增材制造表面评价数据
Table 2 Test design and data of surface evaluation for additive manufacturing
序号 电弧摆宽
D/mm送丝速度
v/(m·min−1)搭接率
η均方根偏差
Sq/mm偏斜度
Ssk序号 电弧摆宽
D/mm送丝速度
v/(m·min−1)搭接率
η均方根偏差
Sq/mm偏斜度
Ssk1 15 6 0.5 0.096 −0.940 18 5 4 0.6 0.198 −0.463 2 15 6 0.6 0.181 −0.229 19 5 6 0.4 0.138 −0.650 3 15 6 0.7 0.318 0.208 20 5 6 0.5 0.119 −0.640 4 15 8 0.5 0.109 −0.284 21 5 6 0.6 0.284 −0.542 5 15 8 0.6 0.229 −0.599 22 5 8 0.4 0.311 −0.200 6 15 8 0.7 0.310 −0.833 23 5 8 0.5 0.463 −0.919 7 10 4 0.4 0.513 −1.870 24 5 8 0.6 0.159 −0.840 8 10 4 0.5 0.519 −1.875 25 0 4 0.4 0.096 −0.376 9 10 4 0.6 0.414 −2.786 26 0 4 0.5 0.286 −0.241 10 10 6 0.4 0.217 −0.423 27 0 4 0.6 0.164 0.482 11 10 6 0.5 0.178 −0.498 28 0 6 0.4 0.296 −0.513 12 10 6 0.6 0.145 −0.567 29 0 6 0.5 0.249 −0.830 13 10 8 0.4 0.116 −0.323 30 0 6 0.6 0.350 −0.149 14 10 8 0.5 0.089 −0.446 31 0 8 0.4 0.287 −0.884 15 10 8 0.6 0.151 −0.423 32 0 8 0.5 0.398 −0.755 16 5 4 0.4 0.136 0.503 33 0 8 0.6 0.355 −0.059 17 5 4 0.5 0.252 −0.565 表 3 部分试验的等级评价(搭接率为0.5)
Table 3 Grades of some test result(η=0.5)
电弧摆宽D/mm 送丝速度v/(m·min−1) 4 6 8 0 B C C 5 B B D 10 D B B 15 — C A -
[1] Cunningham C R, Flynn J M, Shokrani A, et al. Strategies and processes for high quality wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 22: 672 − 686. doi: 10.1016/j.addma.2018.06.020
[2] Hoefer K, Mayr P. 3DPMD-arc-based additive manufacturing with titanium powder as raw material[J]. China Welding, 2019, 28(1): 11 − 15.
[3] Sun Q J, Sang H B, Liu Y B, et al. Cross section scan trace planning based on arc additive manufacturing[J]. China Welding, 2019, 28(4): 16 − 21.
[4] 王晓光, 刘奋成, 方平, 等. CMT电弧增材制造316L不锈钢成形精度与组织性能分析[J]. 焊接学报, 2019, 40(5): 100 − 106. doi: 10.12073/j.hjxb.2019400135 Wang Xiaoguang, Liu Fengcheng, Fang Ping, et al. Forming accuracy and properties of wire arc additive manufacturing of 316L components using CMT process[J]. Transactions of the China Welding Institution, 2019, 40(5): 100 − 106. doi: 10.12073/j.hjxb.2019400135
[5] Spencer J D, Dickens P M, Wykes C M. Rapid prototyping of metal parts by three-dimensional welding[J]. Proceedings of the Institute of Mechanical Engineers, Part B: the Journal of Engineering Manufacture, 1998, 212: 175 − 82. doi: 10.1243/0954405981515590
[6] Li Y Z, Sun Y F, Han Q L, et al. Enhanced beads overlapping model for wire and arc additive manufacturing of multi-layer multi-bead metallic parts[J]. Journal of Materials Processing Technology, 2018, 252: 838 − 848. doi: 10.1016/j.jmatprotec.2017.10.017
[7] 张金田, 王杏华, 王涛. 单道多层电弧增材制造成形控制理论分析[J]. 焊接学报, 2019, 40(12): 63 − 67. Zhang Jintian, Wang Xinghua, Wang Tao. Research on forming control for single-pass multi-layer of WAAM[J]. Transactions of the China Welding Institution, 2019, 40(12): 63 − 67.
[8] Zhang X Y, Zhou Q, Wang K H, et al. Study on microstructure and tensile properties of high nitrogen Cr-Mn steel processed by CMT wire and arc additive manufacturing[J]. Materials and Design, 2019, 166: 1 − 15.
[9] 何宝凤, 魏翠娥, 刘柄显, 等. 三维表面粗糙度的表征和应用[J]. 光学精密工程, 2018, 26(8): 1994 − 2011. doi: 10.3788/OPE.20182608.1994 He Baofeng, Wei Cuie, Liu Bingxian, et al. Three-dimensional surface roughness characterization and application[J]. Optics and Precision Engineering, 2018, 26(8): 1994 − 2011. doi: 10.3788/OPE.20182608.1994
[10] 李伯奎. 三维表面偏斜度与陡度的规律研究[J]. 计量技术, 2008, 10: 3 − 6. doi: 10.3969/j.issn.1000-0771.2008.01.001 Li Bokui. Study on the rule of surface skewness and surface kurtosis[J]. Measurement Technique, 2008, 10: 3 − 6. doi: 10.3969/j.issn.1000-0771.2008.01.001