高级检索

新型22Cr-15Ni奥氏体耐热钢高温低周疲劳行为

杨尚卿, 徐连勇, 赵雷, 韩永典, 荆洪阳

杨尚卿, 徐连勇, 赵雷, 韩永典, 荆洪阳. 新型22Cr-15Ni奥氏体耐热钢高温低周疲劳行为[J]. 焊接学报, 2020, 41(5): 14-18. DOI: 10.12073/j.hjxb.20190718003
引用本文: 杨尚卿, 徐连勇, 赵雷, 韩永典, 荆洪阳. 新型22Cr-15Ni奥氏体耐热钢高温低周疲劳行为[J]. 焊接学报, 2020, 41(5): 14-18. DOI: 10.12073/j.hjxb.20190718003
YANG Shangqing, XU Lianyong, ZHAO Lei, HAN Yongdian, JING Hongyang. Study on high temperature low cycle fatigue behavior of a novel austenitic heat-resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 14-18. DOI: 10.12073/j.hjxb.20190718003
Citation: YANG Shangqing, XU Lianyong, ZHAO Lei, HAN Yongdian, JING Hongyang. Study on high temperature low cycle fatigue behavior of a novel austenitic heat-resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 14-18. DOI: 10.12073/j.hjxb.20190718003

新型22Cr-15Ni奥氏体耐热钢高温低周疲劳行为

基金项目: 国家重点研发计划(2018YFB0704000);哈尔滨工业大学现代焊接国家重点实验室基金资助项目(AWJ-20-R01)
详细信息
    作者简介:

    杨尚卿,1995年出生,硕士;主要从事22Cr15Ni3.5CuNbN奥氏体耐热钢高温低周疲劳相关科研工作;Email:yangshangqing@tju.edu.cn

    通讯作者:

    徐连勇,博士,教授;博士研究生导师;Email:xulianyong@tju.edu.cn.

  • 中图分类号: TG 405

Study on high temperature low cycle fatigue behavior of a novel austenitic heat-resistant steel

  • 摘要: 22Cr15Ni3.5CuNbN新型奥氏体耐热钢是为620 ~ 650 ℃的超(超)临界电站锅炉管道制造而研发的新型奥氏体耐热钢,其高温性能的优劣对机组的安全可靠运行具有重要意义. 文中通过22Cr15Ni3.5CuNbN钢在650 ℃下的低周疲劳试验,研究了其在不同应变幅条件下的应力−应变关系及疲劳寿命. 通过对断口形貌的分析研究了其断裂机理. 结果表明,22Cr15Ni3.5CuNbN钢在高温下表现出明显的循环硬化行为,且没有明显的应力饱和现象出现. 其硬化行为与材料内部位错密度的增加有关. 采用基于塑性应变能密度对其疲劳寿命进行了预测,取得了良好的预测效果. 疲劳断口可以分为3个区域:裂纹源区、裂纹扩展区以及瞬断区. 在较高的应变幅条件下,在断口处可观察到多个裂纹源. 多个裂纹源的形成和二次裂纹的产生是导致其疲劳寿命下降的重要原因.
    Abstract: 22Cr15Ni3.5CuNbN austenitic heat-resistant steel is a new type of austenitic heat-resistant steel developed for the manufacture of super (super) critical power station boiler pipes at 620 − 650 ℃. The high temperature performance of the material is of great significance to the safe and reliable operation of the unit. In this paper, the stress-strain relationship and fatigue life of 22Cr15Ni3.5CuNbN steel under different strain amplitudes were studied by low-cycle fatigue tests at 650 ℃. The fracture morphology is analyzed to study the fracture mechanism. The results show that 22Cr15Ni3.5CuNbN steel exhibits obvious cyclic hardening behavior at high temperature without obvious stress saturation phenomenon. The cyclic hardening behavior is related to the increase of dislocation density. The fatigue life was predicted based on the plastic strain energy density, and a good prediction effect was obtained. The fatigue fracture can be divided into three regions: crack source region, crack propagation region, and transient rupture region. Multiple crack sources can be observed at the fracture under high strain amplitudes. The formation of multiple crack sources and secondary cracks are important reasons for the decline in fatigue life.
  • 图  1   试样形状与尺寸(mm)

    Figure  1.   Shape and dimensions of fatigue specimen

    图  2   应变幅-反转周次关系

    Figure  2.   Strain amplitude vs. reversal cycles

    图  3   塑性应变能密度-疲劳寿命曲线

    Figure  3.   Plastic strain energy density vs. fatigue life

    图  4   循环拉应力峰值随循环周次变化曲线

    Figure  4.   Curves of maximum tensile stress vs. number of cycles

    图  5   透射电镜观察结果

    Figure  5.   TEM images of specimens before and after LCF tests. (a) specimen in as-received condition; (b) specimen after LCF at strain amplitude of 0.5%

    图  6   不同应变幅条件下疲劳断口形貌

    Figure  6.   SEM images of the fracture surface of the specimens at different strain amplitudes. (a) macroscopic appearance of fracture of the specimen at strain amplitude at 0.3%; (b) macroscopic appearance of fracture of the specimen at 0.5%; (c) morphology near crack source of the specimen at strain amplitude of 0.5%; (d) surface of the speciment near fracture

    表  1   22Cr15Ni3.5CuNbN奥氏体耐热钢化学成分(质量分数,%)

    Table  1   Chemical compositions of 22Cr15Ni3.5CuNbN stainless steel

    CMnPSSiNiCrCuNbNB
    0.072.000.030.010.7515.022.03.50.30~0.700.15~0.350.004
    下载: 导出CSV

    表  2   不同应变幅下的低周疲劳寿命

    Table  2   Fatigue life of the steel at different strain amplitudes

    试样编号应变幅ε(%)循环寿命Nf (周次)
    10.312 356
    20.42 083
    30.5506
    40.6415
    下载: 导出CSV

    表  3   不同应变幅下的硬化度

    Table  3   Degree of cyclic hardening of the steel at different strain amplitudes

    应变幅ε(%)最大循环拉应力硬化度DH
    σ1/MPaσH/MPa
    0.3188.69322.100.71
    0.4200.84349.810.74
    0.5215.44397.800.85
    0.6221.98388.800.75
    下载: 导出CSV
  • [1] 刘国志, 王伟来. 超(超)临界锅炉发电技术发展与展望[J]. 电站系统工程, 2011, 27(1): 72 − 73.

    Liu Guozhi, Wang Weilai. Development and prospect of supercritical(ultra-supercritical) boiler technology[J]. Power System Engineering, 2011, 27(1): 72 − 73.

    [2] 张振, 胡正飞, 范立坤, 等. 国产P92钢低周疲劳性能与断裂特征研究[J]. 动力工程学报, 2014, 34(4): 330 − 336.

    Zhang Zhen, Hu Zhengfei, Fan Likun, et al. Study on low cycle fatigue performance and fracture characteristic of domestic P92 steel[J]. Journal of Power Engineering, 2014, 34(4): 330 − 336.

    [3]

    Li H, Jing H, Xu L, et al. Cyclic deformation behavior of an Fe-Ni-Cr alloy at 700 ℃: microstructural evolution and cyclic hardening model[J]. Materials Science and Engineering: A, 2019, 744: 94 − 111. doi: 10.1016/j.msea.2018.11.150

    [4]

    Zhou H W, He Y Z, Cui M, et al. Dependence of dynamic strain ageing on strain amplitudes during the low-cycle fatigue of TP347H austenitic stainless steel at 550 ℃[J]. International Journal of Fatigue, 2013, 56: 1 − 7. doi: 10.1016/j.ijfatigue.2013.07.010

    [5] 毛雪平, 陆道纲, 徐鸿, 等. P92钢高温低周疲劳的实验研究[J]. 原子能科学技术, 2010, 44(10): 1212 − 1216.

    Mao Xueping, Lu Daogang, Xu Hong, et al. Experimental study on low cycle fatigue of P92 steel at high temperature[J]. Atomic Energy Science and Technology, 2010, 44(10): 1212 − 1216.

    [6]

    Pham M S, Holdsworth S R. Dynamic strain ageing of AISI 316L during cyclic loading at 300 ℃: mechanism, evolution, and its effects[J]. Materials Science and Engineering: A, 2012, 556: 122 − 133. doi: 10.1016/j.msea.2012.06.067

    [7]

    Zhao H, Engler-Pinto Jr C C, Tong J, et al. Mechanical response and dislocation substructure of a cast austenitic steel under low cycle fatigue at elevated temperatures[J]. Materials Science and Engineering: A, 2017, 703: 422 − 429. doi: 10.1016/j.msea.2017.07.030

    [8]

    Murugan R, Venugobal P R, Ramaswami T P, et al. Studies on the effect of weld defect on the fatigue behavior of welded structures[J]. China Welding, 2018, 27(1): 57 − 63.

    [9] Suresh S. 材料的疲劳[M]. 王光中, 译. 北京: 国防工业出版社, 1999.
    [10]

    Zhu S P, Huang H Z, He L P, et al. A generalized energy-based fatigue–creep damage parameter for life prediction of turbine disk alloys[J]. Engineering Fracture Mechanics, 2012, 90: 89 − 100. doi: 10.1016/j.engfracmech.2012.04.021

    [11] 魏国前, 陈斯雯, 余茜, 等. 焊趾多裂纹的试验与仿真分析[J]. 焊接学报, 2019, 40(11): 75 − 81.

    Wei Guoqian, Chen Siwen, Yu Xi, et al. Experimental and simulation study on multiple cracks of weld toe[J]. Transaction of the China Welding Insititution, 2019, 40(11): 75 − 81.

  • 期刊类型引用(3)

    1. 李春凯,王嘉昕,石玗,代悦. GTAW熔池激光条纹动态行为与熔透预测方法研究. 机械工程学报. 2024(06): 236-244 . 百度学术
    2. 于欣. 基于智能识别的激光成像特征控制. 激光杂志. 2019(05): 126-130 . 百度学术
    3. 孙博文,朱志明,郭吉昌,于英飞. 基于激光结构光的视觉传感器的图像处理技术研究应用及展望. 焊接. 2018(09): 10-14+65 . 百度学术

    其他类型引用(0)

图(6)  /  表(3)
计量
  • 文章访问数:  448
  • HTML全文浏览量:  41
  • PDF下载量:  20
  • 被引次数: 3
出版历程
  • 收稿日期:  2019-07-17
  • 网络出版日期:  2020-09-26
  • 刊出日期:  2020-09-26

目录

    /

    返回文章
    返回