高级检索
王希靖,魏学玲,张亮亮. 6082-T6铝合金搅拌摩擦焊组织演变与力学性能[J]. 焊接学报, 2018, 39(3): 1-5. DOI: 10.12073/j.hjxb.2018390057
引用本文: 王希靖,魏学玲,张亮亮. 6082-T6铝合金搅拌摩擦焊组织演变与力学性能[J]. 焊接学报, 2018, 39(3): 1-5. DOI: 10.12073/j.hjxb.2018390057
WANG Xijing, WEI Xueling, ZHANG Liangliang. Microstructural evolution and mechanical properties of friction stir welded 6082-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 1-5. DOI: 10.12073/j.hjxb.2018390057
Citation: WANG Xijing, WEI Xueling, ZHANG Liangliang. Microstructural evolution and mechanical properties of friction stir welded 6082-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 1-5. DOI: 10.12073/j.hjxb.2018390057

6082-T6铝合金搅拌摩擦焊组织演变与力学性能

Microstructural evolution and mechanical properties of friction stir welded 6082-T6 aluminum alloy

  • 摘要: 通过透射电子显微镜、扫描电子显微镜、拉伸试验机和显微硬度计对6082-T6铝合金搅拌摩擦焊接头焊缝区组织演变和力学性能进行分层研究. 结果表明,在焊核区上层,材料发生塑性变形,晶格畸变能增加,为降低能量,大量的位错集聚成亚结构边界发生动态回复. 同时在焊接热循环的作用下发生动态再结晶,导致焊缝区上层晶粒细小. 在焊核区下层,主要受到搅拌针搅拌作用,轴肩产热通过扩散过程传递到下层的热量减少,发生动态回复和动态再结晶程度低于焊缝上层,晶粒粗大. 前进侧和后退侧热影响区均出现棒状β′沉淀相. 对应焊缝上、下两层硬度都呈“W”形分布,焊缝上层硬度高于焊缝下层硬度,最小值出现在前进侧. 沿着焊缝长度方向上层和下层的抗拉强度分别为205,186 MPa,呈降低趋势,为韧性断裂.

     

    Abstract: Microstructure evolution and mechanical proprieties of friction stir welded 6082-T6 aluminum alloy were layered-investigated with transmission electron microscope(TEM), scanning electron microscopy(SEM), tensile test machine and Vickers hardness tester. The results showed that plastic deformation occurred in the upper layer of nugget zone which caused the increase of lattice distortion. Hence a large number of dislocations were accumulated into the substructure boundary with dynamic recovery to reduce energy. The grain at the top part of the weld was fine due to dynamic recrystallization by friction heat and shoulder crashing. The bottom of nugget zone which was mainly affected by stirring of the pin was composed of course grain because fewer heat was diffuse to the bottom and dynamic recrystallization and recovery were decreased correspondingly compared to the upper part of the weld. The rodlikeβ′ phase precipitated at both advancing and retreating side of heat affected zone. The microhardness distribution of both the top and bottom side of the joint along the direction perpendicular to the weld had a W shape. The minimum microhardness value appeaed at the advancing side. The tensile strength of the topside weld along welding direction was higher than that of the bottom side. The tensile strength was 205 MPa and 186 MPa respectively. The fracture mode of the weld was ductile fracture.

     

/

返回文章
返回