基于脉冲激光GMAW熔滴尺寸与过渡频率的控制
Control on droplet size and metal transfer frequency based on pulsed laser in GMAW
-
摘要: 针对水下焊接修复中存在的射滴过渡可选参数范围狭窄、热输入高、焊接残余应力等问题,文中基于水下高压焊接试验舱,建立了包含多信号同步采集的激光增强GMAW试验平台,并在常压环境下进行了工艺试验.结果表明,合理选择激光作用位置和激光脉冲占空比,通过激光辅助作用,熔滴过渡摆脱了对焊接电流的主导性依赖,实现激光对GMAW熔滴过渡的主动控制.试验结果及相关理论分析为进一步的高压干法水下焊接过程稳定性控制研究及海洋工程应用奠定了基础.Abstract: To solve a series of problems existing in the projected droplet transfer of underwater welding such as narrow optional parameter, high input and residual stress, a laser-enhanced GMAW experiment platform including welding multi-information synchronization system was established and related experiment in atmospheric environment was conducted based on the underwater hyperbaric welding test tank in this paper. Result shows that droplet transfer gets rid of dominance of welding current and laser controls GMAW metal transfer actively with the assistance of laser when reasonable irradiation position and duty cycle of pulsed laser is selected. Result of experiment and related analysis laid a solid foundation on the further research of welding process stability control in underwater hyperbaric welding and ocean engineering.
-
Keywords:
- laser enhanced /
- metal transfer /
- pulse duty ratio /
- synchronization acquisition
-
-
[1] Nixon J. Underwater repair technology[M]. Cambridge:Woodhead Publishing Ltd., 2000. [2] Subramaniam S, White D R, Lyons D W. Droplet transfer in pulsed gas metal arc welding of aluminum[J]. Welding Journal, 1988, 77(11): 458-464. [3] 杨世彦, 王其隆, 刘井权, 等. 实现稳定射滴过渡的MAG焊接新工艺[J]. 焊接学报, 1998(s1): 112-116. Yang Shiyan, Wang Qilong, Liu Jingquan, et al. A new MAG welding technology with stable projected trasfer[J]. Transactions of the China Welding Institution, 1998(s1): 112-116. [4] Huang Y, Zhang Y M. Laser-enhanced GMAW[J]. Welding Journal, 2010, 89(9): 181-188. [5] Huang Y, Zhang Y M. Laser enhanced metal transfer-part Ⅰ: system and observations[J]. Welding Journal, 2011, 90(10): 83-90. [6] Huang Y, Zhang Y M. Laser enhanced metal transfer-part Ⅱ: analysis and influence factor[J]. Welding Journal, 2011, 90(11): 205-210. [7] Semak V, Matsunawa A. The role of recoil pressure in energy balance during laser materials processing[J]. Journal of Physics D: Applied Physics, 1997, 30: 2541-2552. [8] 殷树言. 气体保护焊工艺基础[M]. 北京: 机械工业出版社, 2007. -
期刊类型引用(12)
1. 崔锡杰,王晓军,李晓航. 改进RRT算法的机器人全局路径规划. 计算机工程与应用. 2025(04): 331-338 . 百度学术
2. 张邦成,单玉升,赵航,董雷,尹晓静. 汽车白车身点焊作业多机器人路径规划研究. 组合机床与自动化加工技术. 2024(02): 51-56 . 百度学术
3. 马佳玮,孙菁伯,迟关心,张广军,李鑫磊. 基于立体视觉和YOLO深度学习框架的焊缝识别与机器人路径规划算法. 焊接学报. 2024(11): 45-49 . 本站查看
4. 李婧,李艳萍. 复杂多陷阱环境下机器人导航路径的蚁群规划策略. 机械设计与制造. 2023(08): 228-232 . 百度学术
5. 刘环宇,王宇,赵柏栋,姚奉裕,李显,王德权. 基于改进蚁群算法的机械臂焊接路径规划. 组合机床与自动化加工技术. 2022(06): 28-30+35 . 百度学术
6. 龚正,涂福泉,李圣伟. 基于改进狼群算法的焊接机器人路径规划. 传感器与微系统. 2022(12): 122-125 . 百度学术
7. 裴跃翔,曹家勇,吕文壮,许海波,李娜. 嵌入筛选操作的遗传算法及其在焊接路径规划中的应用. 机械设计与研究. 2021(02): 109-113 . 百度学术
8. 聂芬,赵志华. 基于改进果蝇算法的焊接机器人路径规划. 制造技术与机床. 2021(10): 21-25 . 百度学术
9. 姚晓通,李致远,程晓. 基于改进蚁群算法的机器人路径规划研究. 计算机仿真. 2021(11): 379-383 . 百度学术
10. 张丽珍,何龙,吴迪,杜战其. 改进型蚁群算法在路径规划中的研究. 制造业自动化. 2020(02): 55-59 . 百度学术
11. 徐金雄,王涛,刘军,班勃. 基于双蚁群算法的双机器人路径规划方法. 机床与液压. 2020(23): 45-48 . 百度学术
12. 吴泽亮. 基于蚁群算法的航线自动生成方法. 舰船科学技术. 2019(14): 43-45 . 百度学术
其他类型引用(17)
计量
- 文章访问数: 391
- HTML全文浏览量: 3
- PDF下载量: 294
- 被引次数: 29