高级检索

基于线激光扫描的工业焊缝外观检测系统

范力予,李志勇,杨军涛,刘航

范力予,李志勇,杨军涛,刘航. 基于线激光扫描的工业焊缝外观检测系统[J]. 焊接学报, 2017, 38(7): 99-103. DOI: 10.12073/j.hjxb.20150722002
引用本文: 范力予,李志勇,杨军涛,刘航. 基于线激光扫描的工业焊缝外观检测系统[J]. 焊接学报, 2017, 38(7): 99-103. DOI: 10.12073/j.hjxb.20150722002
FAN Liyu, LI Zhiyong, YANG Juntao, LIU Hang. Appearance detection system of industrial welding seams based on liner laser scanning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 99-103. DOI: 10.12073/j.hjxb.20150722002
Citation: FAN Liyu, LI Zhiyong, YANG Juntao, LIU Hang. Appearance detection system of industrial welding seams based on liner laser scanning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 99-103. DOI: 10.12073/j.hjxb.20150722002

基于线激光扫描的工业焊缝外观检测系统

Appearance detection system of industrial welding seams based on liner laser scanning

  • 摘要: 文中针对表面带有鱼鳞纹的焊缝提出了工业焊缝外观检测算法:采用高维最小二乘法来拟合焊缝轮廓线,求取拟合轮廓线的二阶导数来确定焊趾范围;并基于拟合轮廓与实际轮廓间的位置偏差提取特征点,进而得到工业焊缝的形状参数.基于上述算法,开发和调试工业焊缝检测的软硬件系统.试结果表明,针对表面有鱼鳞纹的焊缝该算法可以稳定、准确、快速的进行检测.工业应用表明,该系统可稳定实现焊缝轮廓数据的快速采集.通过该系统实现对采样数据的处理计算,最后得到准确的检测结果.
    Abstract: This paper proposed an industrial weld shape detection algorithm for the weld with fish-scale pattern on the surface. A high-dimensional least-square method was used for fitting the weld contour line. The second-derivative of the fitting contour line was calculated to determine the scope of weld toe. Based on the position deviation between fitting and actual contours, the feature points were extracted to obtain the shape parameters of industrial weld. Based on the above algorithm, the hardware and software systems for industrial weld detection were developed and debugged. The test shows that this system is rapid and stable to achieve the acquisition of weld profile data. The accurate results can be obtained through the system to realize the calculation of sampling data.
  • [1] 赵 菁,林三宝. 用于焊接自动化过程的激光视觉传感器[J]. 电焊机,2010,40(11): 1-5. Zhao Jing,Lin Sanbao. Introduction to laser sensors for automated[J].Electric Welding Machine,2010,40(11): 1-5.[2] 林尚杨,陈善本,李成桐.焊接机器人及其应用[M].北京: 机械工业出版社,2000.[3] 雷正龙,吕 涛,陈彦宾.基于扫描激光视觉传感的焊缝图像特征信息识别[J].焊接学报,2013,34(5): 54-58.Lei Zhenglong,Lü Tao,Chen Yanbin.Features extraction for weld image of scanning laser sensing[J].Transactions of the China Welding Institution,2013,34(5): 54-58.[4] Noruk J.Visual weld inspection enter the new millennium[J].Sensor Review,2001,21(4): 278-282.[5] Boillot J P,Uota K,Berthiaume E,etal.Tracking and inspection for laser welding[C]//Proceedings of SPIE-the International Society for Optical Engineering.Osaka:SPIE,2002: 165-170.[6] 伏喜斌.激光视觉焊接过程接头状态及焊缝外观质量检测研究[D].哈尔滨: 哈尔滨工业大学,2010.[7] 伏喜斌,林三宝,杨春利,等.基于激光视觉传感的角焊缝外形尺寸检测[J].焊接学报,2008,29(7): 47-50.Fu Xibin,Lin Sanbao,Yang Chunli,etal.Inspection of fillet weld shape dimension based on laser vision sensing[J].Transactions of the China Welding Institution,2008,29(7): 47-50.[8] 薛家祥,魏仲华,龙 鹏,等.铝镁合金的数字化弧焊电源及专家数据库[J].焊接学报,2012,33(5): 1-4.Xue Jiaxiang,Wei Zhonghua,Long Peng,etal.Digital arc power supply for welding on aluminum-magnesium alloy and its expert database[J].Transactions of the China Welding Institution,2012,33(5): 1-4.[9] 史思琦. 基于轮廓特征的目标识别研究[D]. 西安: 西安电子科技大学,2012.
  • 期刊类型引用(7)

    1. 赵衍华,张粟泓,王非凡,郝云飞,宋建岭,孙世烜,王国庆. 搅拌摩擦焊接与加工技术进展. 航天制造技术. 2025(01): 1-25 . 百度学术
    2. 邹阳,魏巍,范悦,王泽震,王强,赵亮. 铝合金搅拌摩擦焊工艺研究进展. 热加工工艺. 2024(03): 7-13 . 百度学术
    3. 邓利芬,李超,丁艳霞,熊占兵,毕海娟. 大厚度2219铝合金搅拌摩擦焊组织和性能及工程因素分析. 焊接. 2023(06): 18-23 . 百度学术
    4. 鲁克锋,殷凤仕,王文宇,滕涛,樊世冲,刘亚凡,王鸿琪,朱建,任智强. 铝合金搅拌摩擦焊接头缺陷及焊件结构问题控制策略的研究进展. 表面技术. 2023(07): 55-79 . 百度学术
    5. 李德福,王希靖. 6082铝合金摩擦塞补焊接头焊核区晶体特征. 兰州理工大学学报. 2022(03): 7-12 . 百度学术
    6. 李充,田亚林,齐振国,王崴,杨彦龙,王依敬. 6082-T6铝合金无减薄搅拌摩擦焊接头组织与性能. 焊接学报. 2022(06): 102-107+119 . 本站查看
    7. 杜亮,闫福旭. 铝合金焊接常见缺陷及预防措施研究. 中国金属通报. 2021(07): 71-72 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  321
  • HTML全文浏览量:  7
  • PDF下载量:  113
  • 被引次数: 10
出版历程
  • 收稿日期:  2015-07-21

目录

    /

    返回文章
    返回