高级检索

置氢TA10合金焊接接头组织和高温压缩性能

刘全明, 肖俊峰, 高斯峰, 唐文书, 高松, 龙伟民

刘全明, 肖俊峰, 高斯峰, 唐文书, 高松, 龙伟民. 置氢TA10合金焊接接头组织和高温压缩性能[J]. 焊接学报, 2024, 45(8): 79-84, 94. DOI: 10.12073/j.hjxb.20230808004
引用本文: 刘全明, 肖俊峰, 高斯峰, 唐文书, 高松, 龙伟民. 置氢TA10合金焊接接头组织和高温压缩性能[J]. 焊接学报, 2024, 45(8): 79-84, 94. DOI: 10.12073/j.hjxb.20230808004
LIU Quanming, XIAO Junfeng, GAO Sifeng, TANG Wenshu, GAO Song, LONG Weimin. Microstructure and high-temperature compression performance of the hydrogenated titanium alloy welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 79-84, 94. DOI: 10.12073/j.hjxb.20230808004
Citation: LIU Quanming, XIAO Junfeng, GAO Sifeng, TANG Wenshu, GAO Song, LONG Weimin. Microstructure and high-temperature compression performance of the hydrogenated titanium alloy welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 79-84, 94. DOI: 10.12073/j.hjxb.20230808004

置氢TA10合金焊接接头组织和高温压缩性能

基金项目: 国家自然科学基金资助项目(52304385);陕西省重点研发计划(2024GX-YBXM-214);陕西省自然科学基础研究计划(2023-JC-QN-0478);中国华能集团科技项目(HNKJ20-H42).
详细信息
    作者简介:

    刘全明,博士,高级工程师;主要研究方向为高温部件焊接失效分析、焊接修复技术研发及应用;Email: liuquanming1988@126.com

    通讯作者:

    龙伟民,博士,研究员;Email: brazelong@163.com.

  • 中图分类号: TG 407

Microstructure and high-temperature compression performance of the hydrogenated titanium alloy welded joint

  • 摘要:

    航改燃气轮机焊接修复的钛合金叶片服役于含氢环境中常发生氢脆损伤. 试验重点研究了不同置氢量的钛合金氩弧焊接头的微观组织、维氏硬度及氢作用机理、高温压缩性能. 结果表明,置氢0.12%(质量分数)焊接接头组织中析出大层片δ氢化物,其尺寸随H元素含量增加而增大,母材、热影响区及焊缝微观组织发生明显改变;置氢0.21%的硬度明显高于其它置氢量,高氢提升焊接接头硬度;低氢时氢固溶强化使α晶粒硬度略提升,高氢时氢化物析出伴随晶格体积膨胀使金属局部塑性变形产生大量位错,位错运动需绕或切过氢化物,导致α晶粒硬度明显提升. 压下量对高温压缩流变应力影响有限,再结晶软化作用主要受变形温度控制,随压下量增大,焊缝组织中层片α晶粒连同氢化物沿垂直压下方向被拉长或与压下方向呈一定角度被弯折,氢化物沿层片α晶界生长,热压缩过程中组织再结晶现象不明显.

    Abstract:

    Titanium alloy blades repaired by welding in aero-derivative gas turbines often suffer from hydrogen embrittlement damage during service in hydrogen containing environments. The microstructure, Vickers hardness and hydrogen action mechanism, high-temperature compression performance of titanium alloy argon arc welded joints with different hydrogen content were studied in detail. The results show that large lamellar of δ hydride precipitated from the 0.12% H welded joint, with the increase of hydrogen content, the size of the hydride increased, and the microstructure of base metal, heat affected zone and weld zone evolved significantly. The hardness value of the 0.21% H was significantly higher than that of other hydrogen levels, and high hydrogen enhanced the hardness of the welded joint. The H solid solution strengthening effect at low hydrogen levels slightly increased the hardness of α grains. The precipitation of hydrides at high hydrogen levels was accompanied by lattice volume expansion, which caused local plastic deformation of the metal and subsequently generated a large number of dislocations. The movement of dislocations required winding or cutting through hydrides, which caused a significant increase in the hardness of α grains. The amount of compression had limited influence on the high-temperature compression rheological stress, and the recrystallization softening effect was mainly controlled by the deformation temperature. As the amount of compression increased, the α grains along with hydrides were elongated along the vertical compression direction or bent at a certain angle with the compression direction. The hydride grew along the grain boundaries of lamellar α, and the phenomenon of tissue recrystallization was not obvious during hot compression.

  • 图  1   截取焊接试样示意图

    Figure  1.   Schematic diagram of cutting welding samples

    图  2   组织观察和硬度测量位置

    Figure  2.   Microstructure observation and and hardness measurement location

    图  3   置氢焊接接头金相组织

    Figure  3.   Microstructure of the hydrogenated welded joint. (a) 0.12%H welded joint; (b) 0.12%H BM; (c) 0.12%H HAZ; (d) 0.12%H WZ; (e) uncharged WZ; (f) 0.05%H WZ; (g) 0.21%H WZ

    图  4   置氢焊接接头纵剖面维氏硬度分布

    Figure  4.   Vickers hardness distribution of longitudinal section of the hydrogenated welded joint. (a) uncharged; (b) 0.05%H; (c) 0.12%H; (d) 0.21%H

    图  5   置氢0.21%焊缝真应力−应变曲线

    Figure  5.   True stress-strain curves of the hydrogenated 0.21% weld zone

    图  6   置氢0.21%焊接接头压缩变形区金相组织

    Figure  6.   Microstructure of compression deformation zone in the hydrogenated 0.21%H H welded joint. (a) 60% BM; (b) 20% WZ; (c) 40% WZ; (d) 60% WZ

    表  1   不同置氢量焊接接头各区域平均维氏硬度

    Table  1   Regional average Vickers hardness of the welded joint with different hydrogen contents

    置氢量w(%) 平均维氏硬度H/HV
    BM HAZ WZ
    未置氢 156.4 170.5 175.8
    0.05 152.7 168.4 178.6
    0.12 151.7 164.4 186.5
    0.21 169.0 186.2 196.8
    下载: 导出CSV
  • [1]

    Obhuo M, Aziaka D S, Osigwe E, et al. Economic optimization from fleets of aero-derivative gas turbines utilising flared associated gas[J]. International Journal of Thermofluids, 2020(7-8): 100049.

    [2]

    Gülen S C. Gas turbines for electric power generation[M]. Cambridge: Cambridge University Press, 2019.

    [3]

    Abudu K, Igie U, Roumeliotis I, et al. Aeroderivative gas turbine back-up capability with compressed air injection[J]. Applied Thermal Engineering, 2020(180): 115844.

    [4] 彭建强, 张宏涛, 王景生, 等. 中小燃气轮机关键部件用钛合金和变形高温合金对比分析[J]. 东方汽轮机, 2020(2): 58 − 62.

    Peng Jianqiang, Zhang Hongtao, Wang Jingsheng, et al. Comparison analysis of titanium alloy and wrought superalloy for key parts of light duty gas turbine[J]. Dongfang Turbine, 2020(2): 58 − 62.

    [5] 金俊龙, 李菊, 张传臣, 等. 热处理对TC21钛合金线性摩擦焊接头组织与性能的影响[J]. 焊接学报, 2022, 43(9): 69 − 74. doi: 10.12073/j.hjxb.20211009001

    Jin Junlong, Li Ju, Zhang Chuanchen, et al. Effect of heat treatment on microstructure and properties of linear friction welded joint of TC21 titanium alloy[J]. Transactions of the China Welding Institution, 2022, 43(9): 69 − 74. doi: 10.12073/j.hjxb.20211009001

    [6] 卓义民, 陈远航, 杨春利. 航空发动机叶片焊接修复技术的研究现状及展望[J]. 航空制造技术, 2021, 64(8): 22 − 28.

    Zhuo Yimin, Chen Yuanhang, Yang Chunli. Research status and prospect of welding repair technology for aero-engine blades[J]. Aeronautical Manufacturing Technology, 2021, 64(8): 22 − 28.

    [7] 吕振家, 彭建强, 张宏涛, 等. LM2500燃气轮机关键部件用材分析[J]. 东方汽轮机, 2018(2): 73 − 77.

    Lyu Zhenjia, Peng Jianqiang, Zhang Hongtao, et al. Material analysis on key parts of LM2500 gas turbine[J]. Dongfang Turbine, 2018(2): 73 − 77.

    [8]

    Wen Jin, Fleury E, Cao Fei, et al. Hydrogen concentration dependence of phase transformation and microstructure modification in metastable titanium alloy β-21S[J]. Journal of Materials Science, 2021, 56(8): 5161 − 5172. doi: 10.1007/s10853-020-05568-5

    [9]

    Li Xifeng, Xu Fangfei, Hu Lan, et al. Tensile deformation behavior of coarse-grained Ti-55 titanium alloy with different hydrogen additions[J]. Rare Metals, 2021, 40(8): 2092 − 2098. doi: 10.1007/s12598-020-01546-7

    [10] 刘全明, 龙伟民, 傅莉, 等. 氢致TA10钛合金焊接接头拉伸性能演变[J]. 焊接学报, 2020, 41(12): 20 − 24. doi: 10.12073/j.hjxb.20200615003

    Liu Quanming, Long Weimin, Fu Li, et al. Tensile properties evolution of hydrogen-induced TA10 titanium alloy welded joints[J]. Transactions of the China Welding Institution, 2020, 41(12): 20 − 24. doi: 10.12073/j.hjxb.20200615003

    [11] 张慧芳. BTi-62421S合金高温变形行为及应用研究[D]. 太原: 中北大学, 2011.

    Zhang Huifang. Research on high temperature deformation behaviors and application of BTi-62421S alloys[D]. Taiyuan: North University of China, 2011.

    [12]

    Liu Quanming, Zhang Zhaohui, Yang Haiying, et al. Hydride precipitation in the hydrogenated 0.12wt.% H weld zone of Ti-0.3Mo-0.8Ni alloy argon-arc-welded joints[J]. The Journal of the Minerals, Metals & Materials Society, 2018, 70(9): 1902 − 1907.

    [13]

    Liu Quanming, Zhang Zhaohui, Liu Shifeng, et al. The hydride precipitation mechanisms in the hydrogenated weld zone of Ti-0.3Mo-0.8Ni alloy argon-arc welded joints[J]. Advanced Engineering Materials, 2018, 20(5): 1700679. doi: 10.1002/adem.201700679

    [14] 彭新元. 热氢处理对钛合金组织和切削性能的影响[D]. 南昌: 南昌航空大学, 2010.

    Peng Xinyuan. Influence of thermohydrogen processing on microstructure and machinability of titanium alloys[D]. Nanchang: Nanchang Hangkong University, 2010.

    [15] 赖静. 含氢BT20合金热变形流变应力和组织演变的ANN模型[D]. 哈尔滨: 哈尔滨工业大学, 2006.

    Lai Jing. ANN models of flow stress of hot deformation and microstructure evolution in hydrogenized BT20 alloy[D]. Harbin: Harbin Institute of Technology, 2006.

图(6)  /  表(1)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  10
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-07
  • 网络出版日期:  2024-06-25
  • 刊出日期:  2024-08-24

目录

    /

    返回文章
    返回