高级检索

基于球形底模的铝合金自冲铆接工艺多元回归模型

张子豪, 曾凯, 张洪申, 邢保英, 丁燕芳, 田海

张子豪, 曾凯, 张洪申, 邢保英, 丁燕芳, 田海. 基于球形底模的铝合金自冲铆接工艺多元回归模型[J]. 焊接学报, 2024, 45(7): 59-66. DOI: 10.12073/j.hjxb.20230715003
引用本文: 张子豪, 曾凯, 张洪申, 邢保英, 丁燕芳, 田海. 基于球形底模的铝合金自冲铆接工艺多元回归模型[J]. 焊接学报, 2024, 45(7): 59-66. DOI: 10.12073/j.hjxb.20230715003
ZHANG Zihao, ZENG Kai, ZHANG Hongshen, XING Baoying, DING Yanfang, TIAN Hai. Multiple regression model of process for aluminum alloy self-piercing riveting based on ball-shaped die[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 59-66. DOI: 10.12073/j.hjxb.20230715003
Citation: ZHANG Zihao, ZENG Kai, ZHANG Hongshen, XING Baoying, DING Yanfang, TIAN Hai. Multiple regression model of process for aluminum alloy self-piercing riveting based on ball-shaped die[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 59-66. DOI: 10.12073/j.hjxb.20230715003

基于球形底模的铝合金自冲铆接工艺多元回归模型

基金项目: 国家自然科学基金资助项目(51565022,52065034)
详细信息
    作者简介:

    张子豪,硕士研究生;主要研究方向为材料连接技术;Email: zihaozhang_2163@163.com

    通讯作者:

    曾凯,博士,副教授;Email: kmzk201109@163.com.

  • 中图分类号: TG 457;TG 115.5

Multiple regression model of process for aluminum alloy self-piercing riveting based on ball-shaped die

  • 摘要:

    针对低延展性铝合金薄板材料自冲铆接成形过程易出现裂纹问题,提出了一种基于球形底模的自冲铆连接工艺.针对7075铝合金材料,采用Box-Behnken Design响应面试验方法,开展自冲铆接头工艺试验研究,确定最优工艺参数.以铆钉长度,冲头速度和冲头行程作为输入变量,接头的失效载荷和能量吸收值为响应值,建立基于球形底模的自冲铆接工艺多元非线性回归模型,并进行试验验证.结果表明,采用球形底模在保证接头强度下有效抑制自冲铆接头机械内锁区裂纹的产生;应用回归模型得到的理论预测值与试验值之间的相对误差较低,回归模型具有较高的可靠性;同时,单因素分析表明,铆钉长度对接头静力学性能的影响最大;交互作用分析中,铆钉长度和冲头行程的交互作用对失效载荷和能量吸收值的影响最为显著.最后通过NSGA-II遗传算法确定最优工艺参数组合.

    Abstract:

    The self-piercing riveting (SPR) technology based on ball-shaped die is proposed to solve the problem of cracks in the SPR process of aluminum alloy sheet materials with low ductility. The Box-Behnken Design (BBD) response surface experimental method was used to study the SPR joint process for 7075 aluminum alloy material, and the optimal process parameters were determined. Taking rivet length, punch speed and punch stroke as input variables and joint failure load and energy absorption as response values, a multiple nonlinear regression model for SPR process based on ball-shaped die was established and verified by experiments. The results show that the use of ball-shaped die can effectively restrain the crack in the mechanical inner locking zone of the SPR joint under the guarantee of joint strength. The relative error between the theoretical predicted value obtained by the regression model and the experimental value is low, and the regression model has high reliability. Meanwhile, single factor analysis shows that the rivet length has the greatest influence on the static mechanical property of the joint. In the interaction analysis, the interaction of rivet length and punch stroke has the most significant influence on the failure load and energy absorption value. Finally, NSGA-II genetic algorithm was used to determine the optimal process parameter combination.

  • 图  1   自冲铆接设备

    Figure  1.   Self-piercing riveting equipment

    图  2   传统底模的实物图、截面尺寸和成形接头底部(mm)

    Figure  2.   Dies, sectional dimensions, and the bottom of the joints formed with conventional dies. (a) pip die; (b) flat die

    图  3   球形底模实物图、截面尺寸和成形接头底部(mm)

    Figure  3.   Dies, sectional dimensions, and the bottom of the joint formed with ball-shaped die

    图  4   不同模具成形的接头强度数据对比

    Figure  4.   Comparison of joint strength data formed with different dies

    图  5   自冲铆接接头搭接示意图 (mm)

    Figure  5.   Schematic diagram of self-piercing riveting joint lap

    图  6   静力学试验拉伸设备

    Figure  6.   Static test tensile equipment

    图  7   各组接头载荷—位移曲线

    Figure  7.   Load-displacement curve of each group joints

    图  8   接头内锁区钉脚张开度 (mm)

    Figure  8.   Opening degree of rivet in the locking area of joint

    图  9   铆接参数对失效载荷的影响

    Figure  9.   Influence of riveting parameters on failure load. (a) the influence of single factor on failure load; (b) response surface plot; (c) contour plot

    图  10   铆接参数对能量吸收值的影响

    Figure  10.   Influence of riveting parameters on energy absorption value. (a) the influence of single factor on energy absorption value; (b) response surface plot; (c) contour plot

    图  11   Pareto前沿图

    Figure  11.   Pareto frontier map

    表  1   7075-T6铝合金力学性能参数

    Table  1   Mechanical property parameters of 7075-T6 aluminium alloy

    材料弹性模量E/GPa屈服强度ReL/MPa抗拉强度Rm/MPa断后伸长率A(%)
    7075-T67132543013
    下载: 导出CSV

    表  2   三因素三水平设计表

    Table  2   Design table of three factors and levels

    影响因素因子水平
    −101
    铆钉长度L/mm55.56
    冲头速度V/(mm·s−1)204060
    冲头行程D/mm646566
    下载: 导出CSV

    表  3   自冲铆接头拉伸试验结果

    Table  3   Tensile test results of self-piercing riveting joints

    组数铆钉长度L/mm冲头速度V/(mm·s−1)冲头行程D/mm失效载荷F/N能量吸收值W/J
    1540664667.6144.673
    25.540655286.16011.845
    3640645259.39419.826
    4520654395.8524.320
    55.540655386.50511.941
    6640665232.43416.000
    7560654196.8943.955
    85.520644600.11611.527
    95.520665381.42810.946
    105.540655218.26410.174
    115.560665390.00714.960
    125.560644895.33314.012
    13660655064.89517.496
    14540644376.3585.617
    15620655353.07520.230
    下载: 导出CSV

    表  4   方差分析表

    Table  4   Analysis of variance table

    响应值项目平方和自由度均方误差F值P值显著性
    失效载荷模型2.254 × 10682.817 × 1056.830.0154显著
    $ {x}_{1} $1.339 × 10611.339 × 10632.490.0013
    $ {x}_{2} $4.202 × 10314.202 × 1030.100.7603
    $ {x}_{3} $2.966 × 10512.966 × 1057.190.0364
    $ {x}_{1}{x}_{2} $1.990 × 10311.990 × 1030.050.8334
    $ {x}_{1}{x}_{3} $2.532 × 10412.532 × 1040.610.4630
    $ {x}_{2}{x}_{3} $2.054 × 10412.054 × 1040.500.5067
    $ {x}_{1}^{2} $4.806 × 10514.806 × 10511.660.0142
    $ {x}_{2}^{2} $1.163 × 10511.163 × 1052.820.1440
    失拟项2.330 × 10545.825 × 1048.130.1125不显著
    能量吸收值模型387.05664.5122.090.0001显著
    $ {x}_{1} $377.951377.95129.42<0.0001
    $ {x}_{2} $1.4411.440.490.5017
    $ {x}_{3} $2.4212.420.830.3890
    $ {x}_{1}{x}_{2} $1.4011.400.480.5078
    $ {x}_{1}{x}_{3} $2.0812.080.710.4236
    $ {x}_{1}^{2} $1.7611.760.600.4602
    失拟项21.3963.563.610.2327不显著
    下载: 导出CSV

    表  5   回归模型验证

    Table  5   Regression model verification

    组号铆钉长度
    L/mm
    冲头速度
    V/(mm·s−1)
    冲头行程
    D/mm
    失效载荷试验均值
    Fx/N
    失效载荷预测值
    Fy/N
    误差
    ef (%)
    能量吸收值试验均值
    Wx/J
    能量吸收值预测值
    Wy/J
    误差
    ew (%)
    5.530655108.7275233.7672.4513.24811.9889.51
    5.550644830.0335054.1484.6414.00812.9647.45
    下载: 导出CSV
  • [1]

    He X C, Pearson I, Young K. Self-pierce riveting for sheet materials: state of the art[J]. Journal of Materials Processing Technology, 2008, 199(1-3): 27 − 36. doi: 10.1016/j.jmatprotec.2007.10.071

    [2] 曾凯, 何晓聪, 邢保英. 钉脚张开度对自冲铆构件机械内锁刚度的影响[J]. 焊接学报, 2019, 40(6): 143 − 147 + 167. doi: 10.12073/j.hjxb.2019400169

    Zeng Kai, He Xiaocong, Xing Baoying. Effect of the degree of rivet opening on the rigidity of the interlock in self-piercing riveting joints[J]. Transactions of the China Welding Institution, 2019, 40(6): 143 − 147 + 167. doi: 10.12073/j.hjxb.2019400169

    [3]

    Haque R. Quality of self-piercing riveting (SPR) joints from cross-sectional perspective: A review[J]. Archives of Civil and Mechanical Engineering, 2018, 18(1): 83 − 93. doi: 10.1016/j.acme.2017.06.003

    [4] 杨进, 邢保英, 何晓聪, 等. 腐蚀环境下自冲铆接头竞争失效机制及力学性能分析[J]. 焊接学报, 2022, 43(7): 69 − 75 + 117. doi: 10.12073/j.hjxb.20211024002

    Yang Jin, Xing Baoying, He Xiaocong, et al. Analysis of competitive falure mechanisms and mechanical properties of self-piercing riveted joints in corrosive environments[J]. Transactions of the China Welding Institution, 2022, 43(7): 69 − 75 + 117. doi: 10.12073/j.hjxb.20211024002

    [5]

    Wang J T, Chen J W, Zhang Y K, et al. Influence of ultrasonic impact treatment on stress corrosion of 7075 aluminum alloy and its welded joints[J]. Engineering Failure Analysis, 2023, 144: 106908. doi: 10.1016/j.engfailanal.2022.106908

    [6]

    Ying L, Gao T H, Dai M H, et al. Towards joinability of thermal self-piercing riveting for AA7075-T6 aluminum alloy sheets under quasi-static loading conditions[J]. International Journal of Mechanical Sciences, 2021, 189: 105978. doi: 10.1016/j.ijmecsci.2020.105978

    [7]

    Durandet Y, Deam R, Beer A, et al. Laser Assisted self-pierce riveting of AZ31 magnesium alloy strips[J]. Materials & Design, 2010, 31: S13 − S16.

    [8]

    Easton M, Beer A, Barnett M, et al. Magnesium alloy applications in automotive structures[J]. Journal of the Minerals, Metals & Materials Society, 2008, 60(11): 57 − 62. doi: 10.1007/s11837-008-0150-8

    [9]

    JäckeL M, Maul S, Kraus C, et al. Numerical simulation of thermal supported self-pierce riveting of an ultra high-strength aluminium alloy[C]//Journal of Physics: Conference Series, IOP Publishing, 2018, 1063(1): 012074.

    [10]

    Ma Y W, Lou M, Li Y, et al. Effect of rivet and die on self-piercing rivetability of aa6061-t6 and mild steel CR4 of different gauges[J]. Journal of Materials Processing Technology, 2018, 251: 282 − 294. doi: 10.1016/j.jmatprotec.2017.08.020

    [11]

    Drossel W G, Jäckel M. New die concept for self-pierce riveting materials with limited ductility[J]. Key Engineering Materials, 2014, 611-612: 1452 − 1459. doi: 10.4028/www.scientific.net/KEM.611-612.1452

    [12]

    Neuser M, Kappe F, Busch M, et al. Joining suitability of cast aluminium for self-piercing riveting[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1157(1): 012005.

    [13]

    Mori K, Kato T, Abe Y, et al. Plastic joining of ultra high strength steel and aluminium alloy sheets by self piercing rivet[J]. CIRP Annals, 2006, 55(1): 283 − 286. doi: 10.1016/S0007-8506(07)60417-X

    [14]

    Li D Z, Han L, Lu Z J, et al. Influence of die profiles and cracks on joint buttons on the joint quality and mechanical strengths of high strength aluminium alloy joint[J]. Advanced Materials Research, 2012, 548: 398 − 405. doi: 10.4028/www.scientific.net/AMR.548.398

    [15]

    Sulaiman M S, Rohman F S S, Aziz N. Optimization process for ethylene glycol production using the pareto solution[J]. Iop Conference Series: Materials Science and Engineering, 2021, 1011(1): 012003.

图(11)  /  表(5)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  15
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-14
  • 网络出版日期:  2024-05-09
  • 刊出日期:  2024-07-24

目录

    /

    返回文章
    返回