Thermal-fluid behavior and distribution of ceramic particles during laser melting deposition of TiC/TC4 composite materials
-
摘要:
颗粒增强钛基复合材料在航空航天等领域具有广阔的应用前景,采用仿真与试验相结合的方法,对激光熔化沉积TiC/TC4复合材料过程中的热-流行为和沉积层中陶瓷颗粒的分布状态进行了研究. 结果表明,工艺参数对熔池的热-流行为及沉积层形貌具有显著的影响,熔池表面的流体流动呈波纹状,熔融金属从熔池中心向四周流动;熔池底部等温面上熔融金属从四周流向熔池底部,并出现漩涡现象. 在激光熔化沉积过程中,TiC颗粒穿透熔池表面的Marangoni对流区,在熔池中与流体交互作用,最终在沉积层中出现沉积层中上方部位团聚、沉积层中下方部位团聚、沉积层中均匀分布等分布状态.
Abstract:Particulate reinforced titanium matrix composites have broad application prospects in aerospace and other fields. The thermal-fluid behavior and the distribution of the ceramic particles in the deposited layer during the laser melting deposition of TiC/TC4 composites were studied by combining simulation and experiment. The results show that the process parameters have a significant effect on the thermal-fluid behavior of the molten pool and the morphology of the deposited layer. With the increase of laser power, the molten pool size and the maximum fluid flow rate increase. As the scanning speed increases, the molten pool size and the maximum fluid flow rate decrease. The fluid flow on the surface of the molten pool is corrugated. The molten metal flows from the center of the molten pool to the periphery. The molten metal on the isothermal surface of the bottom of the molten pool flows from the periphery to the bottom, and the vortex flow phenomenon occurs. In the process of laser melting deposition, TiC particles penetrate the Marangoni convection zone on the surface of the molten pool and interact with the fluid in the molten pool. Finally, they may appear in the distribution of the agglomeration in middle-upper part, the agglomeration in middle-lower part and uniform distribution in the deposited layer.
-
-
图 3 不同激光功率下激光熔化沉积过程中熔池形貌及表面流场
Figure 3. Morphology and surface flow field of molten pool during laser melting deposition at different laser powers. (a) P = 1 200 W, vs = 10 mm/s; (b) P = 1 400 W, vs = 10 mm/s; (c) P = 1 600 W, vs = 10 mm/s; (d) P = 1 400 W, vs = 8 mm/s; (e) P = 1 400 W, vs = 12 mm/s
图 8 熔池中粒子迁移机制
Figure 8. Mechanism of particle migration in molten pool. (a) particles enter the gas/liquid interface; (b) particle migration mechanism near the back end of the molten pool; (c) particle migration mechanism near the front end of the molten pool; (d) migration mechanism of cross-section of the molten pool
表 1 TiC/TC4复合材料激光熔化沉积试验工艺参数
Table 1 Design table of technological parameters for laser melting deposition test of TiC/TC4 composite materials
编号 激光功率
P/W扫描速度
vs /(mm·s−1)TiC 含量
w(%)送粉率
vf /(g·min−1)1 1400 8 20 9.6 2 1400 10 20 9.6 3 1400 12 20 9.6 4 1200 10 20 9.6 5 1600 10 20 9.6 -
[1] Gao Zhuanni, Bu Hengchang, Feng Yu, et al. Strengthening mechanism of Y2O3 nanoparticles on microstructure and mechanical properties of the laser additive manufacturing joint for large thickness TC4 titanium alloy[J]. Journal of Manufacturing Processes, 2021, 71: 37 − 55. doi: 10.1016/j.jmapro.2021.09.011
[2] 冯进宇, 肖华强, 肖易, 等. TC4表面激光熔覆Ti-Al-(C, N)复合涂层的组织与力学性能[J]. 中国激光, 2022, 49(2): 159 − 167. Feng Jinyu, Xiao Huaqiang, Xiao Yi, et al. Microstructure and mechanical properties of laser cladded Ti-Al-(C, N) composite coating on TC4 surface[J]. Chinese Journal of Lasers, 2022, 49(2): 159 − 167.
[3] Chen Changrong, Liu Chang, Wang Qianting, et al. Effects of heat input on layer heterogeneity of selective laser melting Ti-6Al-4V components[J]. China Welding, 2023, 32(3): 51 − 66.
[4] 顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5): 32 − 55. Gu Dongdong, Zhang Hongmei, Chen Hongyu, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 2020, 47(5): 32 − 55.
[5] 周亦人, 沈自才, 齐振一, 等. 中国航天科技发展对高性能材料的需求[J]. 材料工程, 2021, 49(11): 41 − 50. doi: 10.11868/j.issn.1001-4381.2021.000129 Zhou Yiren, Shen Zicai, Qi Zhenyi, et al. Demand for high performance materials in development of China's aerospace science and technology[J]. Journal of Materials Engineering, 2021, 49(11): 41 − 50. doi: 10.11868/j.issn.1001-4381.2021.000129
[6] 吴诚福, 李新意, 陈洪胜, 等. 激光增材制造WCp钛基复合材料界面连接机理及力学性能[J]. 焊接学报, 2023, 44(3): 44 − 53. doi: 10.12073/j.hjxb.20220425003 Wu Chengfu, Li Xinyi, Chen Hongsheng, et al. Interface connection mechanism and mechanical properties of WCp titanium matrix composites fabricated by laser additive[J]. Transactions of the China Welding Institution, 2023, 44(3): 44 − 53. doi: 10.12073/j.hjxb.20220425003
[7] Yang Chen, Zhao Zhanyong, Bai Peikang, et al. Nano-SiC whisker-reinforced Ti6Al4V matrix composites manufactured by selective laser melting: fine equiaxed grain formation mechanism and mechanical properties[J]. Journal of Materials Processing Technology, 2023, 317: 117981. doi: 10.1016/j.jmatprotec.2023.117981
[8] Xiao Yunmian, Yang Yongqiang, Wang Di, et al. In-situ synthesis of high strength and toughness TiN/Ti6Al4V sandwich composites by laser powder bed fusion under a nitrogen-containing atmosphere[J]. Composites Part B:Engineering, 2023, 253: 110534. doi: 10.1016/j.compositesb.2023.110534
[9] 钦兰云, 门继华, 赵朔, 等. TiB2含量对选区激光熔化TiB/Ti6Al4V复合材料组织及力学性能的影响[J]. 中国激光, 2021, 48(6): 49 − 58. Qin Lanyun, Men Jihua, Zhao Shuo, et al. Effect of TiB2 content on microstructure and mechanical properties of TiB/Ti6Al4V composites formed by selective laser melting[J]. Chinese Journal of Lasers, 2021, 48(6): 49 − 58.
[10] Huo Pengcheng, Zhao Zhanyong, Du Wenbo, et al. Deformation strengthening mechanism of in situ TiC/TC4 alloy nanocomposites produced by selective laser melting[J]. Composites Part B:Engineering, 2021, 225: 109305. doi: 10.1016/j.compositesb.2021.109305
[11] 郭顺, 王朋坤, 顾介仁, 等. 电弧熔炼Ti6Al4V/B4C复合材料微观组织与力学性能[J]. 焊接学报, 2022, 43(9): 62 − 68,117. doi: 10.12073/j.hjxb.20220403002 Guo Shun, Wang Pengkun, Gu Jieren, et al. Microstructure and mechanical properties of Ti6Al4V/B4C composite prepared by arc melting[J]. Transactions of the China Welding Institution, 2022, 43(9): 62 − 68,117. doi: 10.12073/j.hjxb.20220403002
[12] 王建东. 激光熔化沉积TiC/Ti6Al4V复合材料的组织性能调控[D]. 哈尔滨: 哈尔滨工业大学, 2018. Wang Jiandong. Control of microstructure and properties of TiC/Ti6Al4V composites manufactured by laser melting deposition[D]. Harbin: Harbin Institute of Technology, 2018.
[13] Ma Guangyi, Yu Chao, Tang Bokai, et al. High-mass-proportion TiCp/Ti6Al4V titanium matrix composites prepared by directed energy deposition[J]. Additive Manufacturing, 2020, 35: 101323. doi: 10.1016/j.addma.2020.101323
[14] Hu Zhengyang, Cheng Xingwang, Li Shenglin, et al. Investigation on the microstructure, room and high temperature mechanical behaviors and strengthening mechanisms of the (TiB + TiC)/TC4 composites[J]. Journal of Alloys and Compounds, 2017, 726: 240 − 253. doi: 10.1016/j.jallcom.2017.08.017
[15] Wang Tao, Liu Xingyu, Chen Siyu, et al. Study on microstructure and tribological properties of nano/micron TiC/TC4 composites fabricated by laser melting deposition[J]. Journal of Manufacturing Processes, 2022, 82: 296 − 305. doi: 10.1016/j.jmapro.2022.07.068
[16] 王少伟. 选区激光熔化成形TiC/Ti6Al4V复合材料及热处理过程组织性能演化[D]. 太原: 中北大学, 2022. Wang Shaowei. TiC/Ti6Al4V composites by selective laser melting and microstructure evolution following different heat treatment[D]. Taiyuan: North University of China, 2022.
[17] Zhang Y M, Lim C W J, Tang C, et al. Numerical investigation on heat transfer of melt pool and clad generation in directed energy deposition of stainless steel[J]. International Journal of Thermal Sciences, 2021, 165: 106954. doi: 10.1016/j.ijthermalsci.2021.106954
[18] Song Boxue, Yu Tianbiao, Jiang Xingyu, et al. The relationship between convection mechanism and solidification structure of the iron-based molten pool in metal laser direct deposition[J]. International Journal of Mechanical Sciences, 2020, 165: 105207.
[19] Gan Zhengtao, Yu Gang, He Xiuli, et al. Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel[J]. International Journal of Heat and Mass Transfer, 2017, 104: 28 − 38. doi: 10.1016/j.ijheatmasstransfer.2016.08.049
[20] Gan Zhengtao, Liu Hao, Li Shaoxia, et al. Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron[J]. International Journal of Heat and Mass Transfer, 2017, 111: 709 − 722. doi: 10.1016/j.ijheatmasstransfer.2017.04.055
[21] Song Boxue, Yu Tianbiao, Jiang Xingyu, et al. Effect of laser power on molten pool evolution and convection[J]. Numerical Heat Transfer, Part A:Applications, 2020, 78(2): 48 − 59. doi: 10.1080/10407782.2020.1777795
[22] 刘伟嵬, 王怡文, 王灏, 等. 不同工作模式下激光熔化沉积过程熔池演变数值研究[J]. 大连理工大学学报, 2021, 61(4): 344 − 354. doi: 10.7511/dllgxb202104003 Liu Weiwei, Wang Yiwen, Wang Hao, et al. Numerical study of evolution of molten pool in laser melting deposition process under different working modes[J]. Journal of Dalian university of Technology, 2021, 61(4): 344 − 354. doi: 10.7511/dllgxb202104003
[23] Wei Shaopeng, Wang Gang, Shin Y C, et al. Comprehensive modeling of transport phenomena in laser hot-wire deposition process[J]. International Journal of Heat and Mass Transfer, 2018, 125: 1356 − 1368. doi: 10.1016/j.ijheatmasstransfer.2018.04.164
[24] Sun Zhe, Guo Wei, Li Lin. Numerical modelling of heat transfer, mass transport and microstructure formation in a high deposition rate laser directed energy deposition process[J]. Additive Manufacturing, 2020, 33: 101175. doi: 10.1016/j.addma.2020.101175
[25] Du Jun, Wu Yunxiao, Wang Daqing, et al. Droplet impact-induced molten pool dynamics and particle migration patterns during TIG-assisted droplet deposition manufacturing of SiC particle-reinforced Al-Si alloy[J]. Case Studies in Thermal Engineering, 2022, 33: 101962. doi: 10.1016/j.csite.2022.101962
[26] 胡勇, 王梁, 娄复兴, 等. 稳态磁场对激光熔注球形WC颗粒分布的影响机理研究[J]. 机械工程学报, 2021, 57(1): 240 − 248. doi: 10.3901/JME.2021.01.240 Hu Yong, Wang Liang, Lou Fuxing, et al. Mechanism study of steady magnetic field effect on spherical WC particle distribution during laser melt injection[J]. Journal of Mechanical Engineering, 2021, 57(1): 240 − 248. doi: 10.3901/JME.2021.01.240
[27] Vreeling J A, Ocelík V, Pei Y T, et al. Laser melt injection in aluminum alloys: On the role of the oxide skin[J]. Acta Materialia, 2000, 48(17): 4225 − 4233. doi: 10.1016/S1359-6454(00)00278-0
[28] Xu Boan, Jiang Ping, Wang Yilin, et al. Multi-physics simulation of wobbling laser melting injection of aluminum alloy with SiC particles: SiC particles gradient distribution in fusion zone[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121960. doi: 10.1016/j.ijheatmasstransfer.2021.121960
[29] Wang Liang, Yao Jianhua, Hu Yong, et al. Influence of electric-magnetic compound field on the WC particles distribution in laser melt injection[J]. Surface and Coatings Technology, 2017, 315: 32 − 43. doi: 10.1016/j.surfcoat.2017.01.116